GB/T 13245-91 1 Theme and Scope This standard specifies the method abstract, reagents, apparatus, specimen, analyzing procedure, result calculation and permissible tolerance used for determination of the total carbon ...GB/T 13245-91 1 Theme and Scope This standard specifies the method abstract, reagents, apparatus, specimen, analyzing procedure, result calculation and permissible tolerance used for determination of the total carbon with combustion gravimetric method.展开更多
The heated process of raw materials for electron trapping materials (ETM) is investigated by thermo-analysis method. The temperature ranges of raw materials experienced some physical and chemical change processes, suc...The heated process of raw materials for electron trapping materials (ETM) is investigated by thermo-analysis method. The temperature ranges of raw materials experienced some physical and chemical change processes, such as dehydration, organic solvent removal, crystal sulphur burning, oxidation of alkaline earth sulfides and solid phase reaction (rare earth doped) and so on, are obtained. The experimental results also show that the presence of trace oxygen in shielded gas is very harmful to prepare the ETM.The raw material thermo-analysis results provide very important experimental reference for optimizing the ETM preparation techniques.展开更多
In this paper, X-ray diffractogram analysis and SEM observation of Al$ C$ formed at high temperature from carbon-containing refractories ivith Al have been carried out. Aluminum added to carbon-containing refractories...In this paper, X-ray diffractogram analysis and SEM observation of Al$ C$ formed at high temperature from carbon-containing refractories ivith Al have been carried out. Aluminum added to carbon-containing refractories reacts with C(s) to form Al^ C^(s) gradually during heating from 600 ’C to 1200^0 . It is considered that the interlocked structure of Al^ C-$ plate crystals promotes the outstanding increase of hot modulus of rupture of carbon-containing refractories with Al. The HMOR of carbon-containing refractories added with Al additive from 0 to 5wt% increases by 2.8 times being from 6.5MPa to 18.2MPa. After a thermochemical calculation for hydration reaction processes ofAl^C^ and H^O (g), the equilibrium partial pressure chart ofH^O (g) in H^O-A^C^-Al^ OH)} system vs various temperatures has been attained . The H2 0 (g) partial pressure in the air needed for the Al^ C3 hydration reaction is no more than 10;18 atm at the temperature below 120t . It is considered that the burned carbon-containing re展开更多
The world's first full Experimental Advanced Superconducting Tokamak(EAST) is designed with the auxiliary heating method of neutral beam injection(NBI)system. Beam collimators are arranged on both sides of the bea...The world's first full Experimental Advanced Superconducting Tokamak(EAST) is designed with the auxiliary heating method of neutral beam injection(NBI)system. Beam collimators are arranged on both sides of the beam channel for absorbing the divergence beam during the beam transmission process in the EAST-NBI system.The gas baffle entrance collimator(GBEC) is a typical high-heat-flux component located at the entrance of gas baffle. An efficient and accurate analysis of its thermodynamic performance is of great significance to explore the working limit and to ensure safe operation of the system under a high-parameter steady-state condition. Based on the thermo-fluid coupled method, thermodynamic analysis and simulation of GBEC is performed to get the working states and corresponding operating limits at different beam extraction conditions. This study provides a theoretical guidance for the next step to achieve long pulse with highpower experimental operation and has an important reference to ensure the safe operation of the system.展开更多
Thermo-hydraulic calculation and analysis for sub-module of Chinese HCSB TBM were carried out using FE code ANSYS. Results indicate that temperature distribution in materials used in sub-module is reasonable and accep...Thermo-hydraulic calculation and analysis for sub-module of Chinese HCSB TBM were carried out using FE code ANSYS. Results indicate that temperature distribution in materials used in sub-module is reasonable and acceptable.展开更多
A novel modeling technique based on the coupled Eulerian-Lagrangian(CEL) method is provided to solve the geotechnical problems with large deformations. The technique is intended to solve the update problem of soil mec...A novel modeling technique based on the coupled Eulerian-Lagrangian(CEL) method is provided to solve the geotechnical problems with large deformations. The technique is intended to solve the update problem of soil mechanical properties during spudcan penetration in normally consolidated clay soil. In the CEL model, the normal method of assigning an increasing shear strength profile with depth(NA) is defective due to its Eulerian framework. In this paper, a new technique is proposed to update soil material properties by introducing thermo-mechanical coupled analysis(TMCA) to the CEL models. During establishment of the CEL models, the optimal penetration velocity and minimum mesh size are determined through parametric studies. Reasonability and accuracy are then verified through comparison of the preliminary results with the soil flow configuration and penetration resistance(Fv) of a centrifuge test, and the results of the proposed method are compared with those of the remeshing and interpolation technique with small strain(RITSS) method. To achieve a CEL model with satisfactory accuracy, the NA and TMCA methods implemented in the CEL models and the RITSS method are first adopted in weightless soil. Comparison of the findings with those obtained in previous studies shows that the TMCA method can update material properties and predict Fv. The TMCA method is then applied to soils with self-weight and different shear strength profiles. Results show that the proposed method is capable of accurately modeling the large deformation problem of spudcan penetration in non-homogeneous clay.展开更多
The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is f...The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is first carried out in order to determine temperature evolution and to predict the residual temperatures during the burst firing event; 2) The thermo-mecha- nical stresses and deformation caused by both the residual temperature field and the gas pressure are then calculated. The results show that the residual temperature field tends to a steady state with the increasing of rounds. The residual temperature field has much effect on the gun barrel stress and deformation, especially on the assembly area between barrel and water jacket. The gage between the barrel and water jacket is the critical factor to the thermo- mechanical stress and deformation. The results of this analysis will be very useful to develop the new strength design theory of the liquid-cooled gun barrel.展开更多
Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demons...Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demonstrated that the LCE based bimorphs can be effective soft robots once integrated with soft sensors and thermal actuators. Here, we present an analytical transient thermo-mechanical model for a bimorph structure based soft robot, which consists of a strip of LCE and a thermal inert polymer actuated by an ultra-thin stretchable open-mesh shaped heater to mimic the unique locomotion behaviors of an inchworm. The coupled mechanical and thermal analysis based on the thermo-mechanical theory is carried out to underpin the transient bending behavior, and a systematic understanding is therefore achieved. The key analytical results reveal that the thickness and the modulus ratio of the LCE and the inert polymer layer dominate the transient bending deformation. The analytical results will not only render fundamental understanding of the actuation of bimorph structures, but also facilitate the rational design of soft robotics.展开更多
A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Kar- man large deflection theory, the nonlinear vibration ...A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Kar- man large deflection theory, the nonlinear vibration governing equation is obtained by using Hamilton’s principle and the Rayleigh-Ritz method. The harmonic balance method (HBM) is used to analyze the first-order approximate response and obtain the frequency response function. The system shows non-linear phenomena such as hardening nonlinear- ity, multiple coexistence solutions, and jumps. The effects of the temperature difference, the damping coefficient, the plate thickness, the excited charge, and the mode on the pri- mary resonance response are theoretically analyzed. With the increase in the temperature difference, the corresponding frequency jumping increases, while the resonant amplitude decreases gradually. Finally, numerical verifications are carried out by the Runge-Kutta method, and the results agree very well with the theoretical results.展开更多
Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror...Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror plus 4J32 flexible support plus ZTC4 support back plate, the second K9 mirror plus 4J45 flexible support plus ZTC4 support back plate, and the third SiC mirror plus SiC rigid support back plate. A coupled thermo-mechanical analysis of the three primary mirror assemblies was made with finite element method. The results show that the SiC assembly is the best of all schemes in terms of their combination properties due to its elimination of the thermal expansion mismatch between the materials. The analytical results on the cryogenic property of the SiC primary mirror assembly show a higher surface finish of the SiC mirror even under the cryogenic condition.展开更多
The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic const...The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic constitutive equation is established acording to the analysis of the thermorheologically simple. The stress analysis model is constructed on the base of some reasonable hypotheses which consider the restraint conditions of mold and the characteristics of injection molding in the post-filling stage. The mathematical model is calculated by the finite difference method. The results can help to predict the warpage of plastic products.展开更多
To simplify the stability analysis of frozen soil slope, a pseudo-coupled numerical approach is developed. In this approach, the coupled heat transfer and water flow in frozen soils are simulated first, and based on t...To simplify the stability analysis of frozen soil slope, a pseudo-coupled numerical approach is developed. In this approach, the coupled heat transfer and water flow in frozen soils are simulated first, and based on the computed thermal-hydro field, the stability of frozen soil slope is evaluated. Although the shear strength for frozen soil is very complicated and is usually represented by a nonlinear MC failure criterion, a simple linear MC yield criterion is utilized. In this method, the internal friction angle is expressed as a function of volumetric ice content and the cohesion is fitted as a simple bilinear expression of Tand volumetric water content. To assess slope stability, the limit analysis is employed in conjunction with the recently developed a-section search algorithm. A frozen soil slope example is used to examine the proposed pseudo-coupled numerical approach, and numerical studies validate its effectiveness. Based on numerical results, it is seen that slope stability may be remarkably influenced by warming air (or grotmd surface) temperature. With increasing ground surface temperature, slope stability indicated by FOS may reduce to 1.0, implying that wanning air temperature could be a trigger of frozen soil slope failure.展开更多
According to the lower-bound theorem of limit analysis the Rigid Finite Element Meth-od(RFEM)is applied to structural limit analysis and the linear programmings for limit analysis are deducedin this paper.Moreover,the...According to the lower-bound theorem of limit analysis the Rigid Finite Element Meth-od(RFEM)is applied to structural limit analysis and the linear programmings for limit analysis are deducedin this paper.Moreover,the Thermo-Parameter Method(TPM)and Parametric Variational principles(PVP)are used to reduce the computational effort while maintaining the accuracy of solutions.A better solution isalso obtained in this paper.展开更多
Success criteria analysis(SCA) bridges the gap between deterministic and probabilistic approaches for risk assessment of complex systems. To develop a risk model,SCA evaluates systems behaviour in response to postulat...Success criteria analysis(SCA) bridges the gap between deterministic and probabilistic approaches for risk assessment of complex systems. To develop a risk model,SCA evaluates systems behaviour in response to postulated accidents using deterministic approach to provide required information for the probabilistic model. A systematic framework is proposed in this article for extracting the front line systems success criteria. In this regard, available approaches are critically reviewed and technical challenges are discussed. Application of the proposed methodology is demonstrated on a typical Westinghouse-type nuclear power plant. Steam generator tube rupture is selected as the postulated accident. The methodology is comprehensive and general; therefore, it can be implemented on the other types of plants and complex systems.展开更多
A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a dire...A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.展开更多
Airborne particulate matter (PM) filter sample processing is susceptible to error and can present issues associated with organizing samples, tracking data, and maintaining weighing conditions. While filter weighing fa...Airborne particulate matter (PM) filter sample processing is susceptible to error and can present issues associated with organizing samples, tracking data, and maintaining weighing conditions. While filter weighing facilities should implement robust quality assurance and control checks to ensure that data collection is accurate and filter storage is secure, mistakes and accidents can still occur that compromise valuable data. This paper presents a novel approach to PM filter sample processing that allows for data validation or data recovery while ensuring data integrity. The technique approximates the original, unused pre-sampling weight of polytetrafluoroethylene (PTFE) filters after PM collection to determine PM mass-deposition (MD). The method describes the extraction of PM loaded on PTFE filters via sonication in relatively non-toxic solvents, methanol and distilled water. The extraction method is compared to the standard gravimetric PM MD determination method for a set of 265 PTFE filters with mean post-sampling filter mass of 116 ± 3.6 mg, mean estimated PM MD using the standard method of 367 ± 589 μg, and mean estimated PM MD using the extraction method of 371 ± 589 μg. A Deming regression comparison of the two methods yields a slope of 0.9983 and a Pearson’s r of 0.999. A Bland-Altman assessment of the percent and absolute differences between the two methods shows the limits of agreement between 32.5% and 25.5% and -61.9 and 50.1 μg, respectively. The 99% confidence interval of the mean difference in mass deposition between the two methods is -5.8 ± 4.5 μg. These data demonstrate that estimating pre-sampling PTFE filter mass by extracting PM from sampled filters is a viable technique for gravimetric filter analysis. This method is of use in recovering pre-sampling filter weights that have been lost, incorrectly measured, or otherwise compromised.展开更多
Super plasticizer was synthesized by using coal coking by product washing oil and industrial naphthalene. The results show that sulfonationt time (2.5 h), sulfonation temperature (160 ℃) and condensation time (5...Super plasticizer was synthesized by using coal coking by product washing oil and industrial naphthalene. The results show that sulfonationt time (2.5 h), sulfonation temperature (160 ℃) and condensation time (5.0 h) are key factors. Adding oxidizing agent MO in the course of synthesis can decrease the emission of SO2 in exhaust (20%). Compared with NF, NF-30 have some advantages in lower cost, high water reducing rate (19.7%) and optimum early strengths. Moreover, TGA-DTA and SEM analysis were adopted to research the NF-30 modified concrete on hydyation mechanism. The analysis show that, compared with NF, there are a large number of hydration products such as Ca (OH)2, C-S-H, AFt etc of NF-30, the structure of NF-30 is dense and the performance is good.展开更多
Vibrational behavior of thermally actuated cantilever micro-beams and their mechanical response at moderately high frequency under a non-harmonic periodic loading is studied in this paper. Two different configurations...Vibrational behavior of thermally actuated cantilever micro-beams and their mechanical response at moderately high frequency under a non-harmonic periodic loading is studied in this paper. Two different configurations are considered: 1) a straight beam with two actuation layers on top and bottom which utilizes the bimorph effect to induce bending;2) a uniform beam with base excitation, where the beam is mounted on an actuator which moves it periodically at its base perpendicular to its axis. Generally, vibrating micro-cantilevers are required to oscillate at a specified frequency. In order to increase the efficiency of the system, and achieve deflections with low power consumption, geometrical features of the beams can be quantified so that the required vibrating frequency matches the natural frequencies of the beam. A parametric modal analysis is conducted on two configurations of micro-cantilever and the first natural frequency of the cantilevers as a function of geometrical parameters is extracted. To evaluate vibrational behavior and thermo-mechanical efficiency of micro-cantilevers as a function of their geometrical parameters and input power, a case study with a specified vibrating frequency is considered. Due to significant complexities in the loading conditions and thermo-mechanical behavior, this task can only be tackled via numerical methods. Selecting the geometrical parameters in order to induce resonance at the nominal frequency, non-linear time-history (transient) thermo-mechanical finite element analysis (using ANSYS) is run on each configuration to study its response to the periodic heating input. Approaches to improve the effectiveness of actuators in each configuration based on their implementation are investigated.展开更多
文摘GB/T 13245-91 1 Theme and Scope This standard specifies the method abstract, reagents, apparatus, specimen, analyzing procedure, result calculation and permissible tolerance used for determination of the total carbon with combustion gravimetric method.
文摘The heated process of raw materials for electron trapping materials (ETM) is investigated by thermo-analysis method. The temperature ranges of raw materials experienced some physical and chemical change processes, such as dehydration, organic solvent removal, crystal sulphur burning, oxidation of alkaline earth sulfides and solid phase reaction (rare earth doped) and so on, are obtained. The experimental results also show that the presence of trace oxygen in shielded gas is very harmful to prepare the ETM.The raw material thermo-analysis results provide very important experimental reference for optimizing the ETM preparation techniques.
文摘In this paper, X-ray diffractogram analysis and SEM observation of Al$ C$ formed at high temperature from carbon-containing refractories ivith Al have been carried out. Aluminum added to carbon-containing refractories reacts with C(s) to form Al^ C^(s) gradually during heating from 600 ’C to 1200^0 . It is considered that the interlocked structure of Al^ C-$ plate crystals promotes the outstanding increase of hot modulus of rupture of carbon-containing refractories with Al. The HMOR of carbon-containing refractories added with Al additive from 0 to 5wt% increases by 2.8 times being from 6.5MPa to 18.2MPa. After a thermochemical calculation for hydration reaction processes ofAl^C^ and H^O (g), the equilibrium partial pressure chart ofH^O (g) in H^O-A^C^-Al^ OH)} system vs various temperatures has been attained . The H2 0 (g) partial pressure in the air needed for the Al^ C3 hydration reaction is no more than 10;18 atm at the temperature below 120t . It is considered that the burned carbon-containing re
基金supported by the National Natural Science Foundation of China(No.11605234)the Foundation of ASIPP(No.DSJJ-15-GC02)
文摘The world's first full Experimental Advanced Superconducting Tokamak(EAST) is designed with the auxiliary heating method of neutral beam injection(NBI)system. Beam collimators are arranged on both sides of the beam channel for absorbing the divergence beam during the beam transmission process in the EAST-NBI system.The gas baffle entrance collimator(GBEC) is a typical high-heat-flux component located at the entrance of gas baffle. An efficient and accurate analysis of its thermodynamic performance is of great significance to explore the working limit and to ensure safe operation of the system under a high-parameter steady-state condition. Based on the thermo-fluid coupled method, thermodynamic analysis and simulation of GBEC is performed to get the working states and corresponding operating limits at different beam extraction conditions. This study provides a theoretical guidance for the next step to achieve long pulse with highpower experimental operation and has an important reference to ensure the safe operation of the system.
文摘Thermo-hydraulic calculation and analysis for sub-module of Chinese HCSB TBM were carried out using FE code ANSYS. Results indicate that temperature distribution in materials used in sub-module is reasonable and acceptable.
基金supported by the National Natural Science Foundation of China (No. 51779236)the NSFC-Shandong Joint Fund Project (No. U1706226)funded by the China Scholarship Council (No. 201606330049)
文摘A novel modeling technique based on the coupled Eulerian-Lagrangian(CEL) method is provided to solve the geotechnical problems with large deformations. The technique is intended to solve the update problem of soil mechanical properties during spudcan penetration in normally consolidated clay soil. In the CEL model, the normal method of assigning an increasing shear strength profile with depth(NA) is defective due to its Eulerian framework. In this paper, a new technique is proposed to update soil material properties by introducing thermo-mechanical coupled analysis(TMCA) to the CEL models. During establishment of the CEL models, the optimal penetration velocity and minimum mesh size are determined through parametric studies. Reasonability and accuracy are then verified through comparison of the preliminary results with the soil flow configuration and penetration resistance(Fv) of a centrifuge test, and the results of the proposed method are compared with those of the remeshing and interpolation technique with small strain(RITSS) method. To achieve a CEL model with satisfactory accuracy, the NA and TMCA methods implemented in the CEL models and the RITSS method are first adopted in weightless soil. Comparison of the findings with those obtained in previous studies shows that the TMCA method can update material properties and predict Fv. The TMCA method is then applied to soils with self-weight and different shear strength profiles. Results show that the proposed method is capable of accurately modeling the large deformation problem of spudcan penetration in non-homogeneous clay.
文摘The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is first carried out in order to determine temperature evolution and to predict the residual temperatures during the burst firing event; 2) The thermo-mecha- nical stresses and deformation caused by both the residual temperature field and the gas pressure are then calculated. The results show that the residual temperature field tends to a steady state with the increasing of rounds. The residual temperature field has much effect on the gun barrel stress and deformation, especially on the assembly area between barrel and water jacket. The gage between the barrel and water jacket is the critical factor to the thermo- mechanical stress and deformation. The results of this analysis will be very useful to develop the new strength design theory of the liquid-cooled gun barrel.
基金Project supported by the National Basic Research Program(No.2015CB351901)the National Natural Science Foundation of China(Nos.11372272,11622221,11621062,11502009,and 11772030)+2 种基金the Doctoral New Investigator Grant from American Chemical Society Petroleum Research Fund of the National Science Foundation(Nos.1509763 and 1554499)the Opening Fund of State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University(No.SV2018-KF-13)the Fundamental Research Funds for the Central Universities(No.2017XZZX002-11)
文摘Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demonstrated that the LCE based bimorphs can be effective soft robots once integrated with soft sensors and thermal actuators. Here, we present an analytical transient thermo-mechanical model for a bimorph structure based soft robot, which consists of a strip of LCE and a thermal inert polymer actuated by an ultra-thin stretchable open-mesh shaped heater to mimic the unique locomotion behaviors of an inchworm. The coupled mechanical and thermal analysis based on the thermo-mechanical theory is carried out to underpin the transient bending behavior, and a systematic understanding is therefore achieved. The key analytical results reveal that the thickness and the modulus ratio of the LCE and the inert polymer layer dominate the transient bending deformation. The analytical results will not only render fundamental understanding of the actuation of bimorph structures, but also facilitate the rational design of soft robotics.
基金Project supported by the National Natural Science Foundation of China(No.11202190)the Natural Science Foundation for Young Scientists of Shanxi Province of China(No.201801D221037)the China Postdoctoral Science Foundation(No.2018M640373)
文摘A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Kar- man large deflection theory, the nonlinear vibration governing equation is obtained by using Hamilton’s principle and the Rayleigh-Ritz method. The harmonic balance method (HBM) is used to analyze the first-order approximate response and obtain the frequency response function. The system shows non-linear phenomena such as hardening nonlinear- ity, multiple coexistence solutions, and jumps. The effects of the temperature difference, the damping coefficient, the plate thickness, the excited charge, and the mode on the pri- mary resonance response are theoretically analyzed. With the increase in the temperature difference, the corresponding frequency jumping increases, while the resonant amplitude decreases gradually. Finally, numerical verifications are carried out by the Runge-Kutta method, and the results agree very well with the theoretical results.
文摘Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror plus 4J32 flexible support plus ZTC4 support back plate, the second K9 mirror plus 4J45 flexible support plus ZTC4 support back plate, and the third SiC mirror plus SiC rigid support back plate. A coupled thermo-mechanical analysis of the three primary mirror assemblies was made with finite element method. The results show that the SiC assembly is the best of all schemes in terms of their combination properties due to its elimination of the thermal expansion mismatch between the materials. The analytical results on the cryogenic property of the SiC primary mirror assembly show a higher surface finish of the SiC mirror even under the cryogenic condition.
文摘The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic constitutive equation is established acording to the analysis of the thermorheologically simple. The stress analysis model is constructed on the base of some reasonable hypotheses which consider the restraint conditions of mold and the characteristics of injection molding in the post-filling stage. The mathematical model is calculated by the finite difference method. The results can help to predict the warpage of plastic products.
基金supported in part by the Scientific Research Foundation for the 973 Program of China (No. 2012CB026104)Research Fund of Young Teachers for the Doctoral Program of Higher Education of China (No. 20110009120020)the Fundamental Research Funds of the Central Universities (No. 2013JBM059)
文摘To simplify the stability analysis of frozen soil slope, a pseudo-coupled numerical approach is developed. In this approach, the coupled heat transfer and water flow in frozen soils are simulated first, and based on the computed thermal-hydro field, the stability of frozen soil slope is evaluated. Although the shear strength for frozen soil is very complicated and is usually represented by a nonlinear MC failure criterion, a simple linear MC yield criterion is utilized. In this method, the internal friction angle is expressed as a function of volumetric ice content and the cohesion is fitted as a simple bilinear expression of Tand volumetric water content. To assess slope stability, the limit analysis is employed in conjunction with the recently developed a-section search algorithm. A frozen soil slope example is used to examine the proposed pseudo-coupled numerical approach, and numerical studies validate its effectiveness. Based on numerical results, it is seen that slope stability may be remarkably influenced by warming air (or grotmd surface) temperature. With increasing ground surface temperature, slope stability indicated by FOS may reduce to 1.0, implying that wanning air temperature could be a trigger of frozen soil slope failure.
基金The project supported by National Natural Science Foundation of China
文摘According to the lower-bound theorem of limit analysis the Rigid Finite Element Meth-od(RFEM)is applied to structural limit analysis and the linear programmings for limit analysis are deducedin this paper.Moreover,the Thermo-Parameter Method(TPM)and Parametric Variational principles(PVP)are used to reduce the computational effort while maintaining the accuracy of solutions.A better solution isalso obtained in this paper.
文摘Success criteria analysis(SCA) bridges the gap between deterministic and probabilistic approaches for risk assessment of complex systems. To develop a risk model,SCA evaluates systems behaviour in response to postulated accidents using deterministic approach to provide required information for the probabilistic model. A systematic framework is proposed in this article for extracting the front line systems success criteria. In this regard, available approaches are critically reviewed and technical challenges are discussed. Application of the proposed methodology is demonstrated on a typical Westinghouse-type nuclear power plant. Steam generator tube rupture is selected as the postulated accident. The methodology is comprehensive and general; therefore, it can be implemented on the other types of plants and complex systems.
文摘A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.
文摘Airborne particulate matter (PM) filter sample processing is susceptible to error and can present issues associated with organizing samples, tracking data, and maintaining weighing conditions. While filter weighing facilities should implement robust quality assurance and control checks to ensure that data collection is accurate and filter storage is secure, mistakes and accidents can still occur that compromise valuable data. This paper presents a novel approach to PM filter sample processing that allows for data validation or data recovery while ensuring data integrity. The technique approximates the original, unused pre-sampling weight of polytetrafluoroethylene (PTFE) filters after PM collection to determine PM mass-deposition (MD). The method describes the extraction of PM loaded on PTFE filters via sonication in relatively non-toxic solvents, methanol and distilled water. The extraction method is compared to the standard gravimetric PM MD determination method for a set of 265 PTFE filters with mean post-sampling filter mass of 116 ± 3.6 mg, mean estimated PM MD using the standard method of 367 ± 589 μg, and mean estimated PM MD using the extraction method of 371 ± 589 μg. A Deming regression comparison of the two methods yields a slope of 0.9983 and a Pearson’s r of 0.999. A Bland-Altman assessment of the percent and absolute differences between the two methods shows the limits of agreement between 32.5% and 25.5% and -61.9 and 50.1 μg, respectively. The 99% confidence interval of the mean difference in mass deposition between the two methods is -5.8 ± 4.5 μg. These data demonstrate that estimating pre-sampling PTFE filter mass by extracting PM from sampled filters is a viable technique for gravimetric filter analysis. This method is of use in recovering pre-sampling filter weights that have been lost, incorrectly measured, or otherwise compromised.
基金Funded by the National Natural Science Foundation of China(No.51175004)Educational Commission of Anhui Province of China(No.KJ2012A078)
文摘Super plasticizer was synthesized by using coal coking by product washing oil and industrial naphthalene. The results show that sulfonationt time (2.5 h), sulfonation temperature (160 ℃) and condensation time (5.0 h) are key factors. Adding oxidizing agent MO in the course of synthesis can decrease the emission of SO2 in exhaust (20%). Compared with NF, NF-30 have some advantages in lower cost, high water reducing rate (19.7%) and optimum early strengths. Moreover, TGA-DTA and SEM analysis were adopted to research the NF-30 modified concrete on hydyation mechanism. The analysis show that, compared with NF, there are a large number of hydration products such as Ca (OH)2, C-S-H, AFt etc of NF-30, the structure of NF-30 is dense and the performance is good.
文摘Vibrational behavior of thermally actuated cantilever micro-beams and their mechanical response at moderately high frequency under a non-harmonic periodic loading is studied in this paper. Two different configurations are considered: 1) a straight beam with two actuation layers on top and bottom which utilizes the bimorph effect to induce bending;2) a uniform beam with base excitation, where the beam is mounted on an actuator which moves it periodically at its base perpendicular to its axis. Generally, vibrating micro-cantilevers are required to oscillate at a specified frequency. In order to increase the efficiency of the system, and achieve deflections with low power consumption, geometrical features of the beams can be quantified so that the required vibrating frequency matches the natural frequencies of the beam. A parametric modal analysis is conducted on two configurations of micro-cantilever and the first natural frequency of the cantilevers as a function of geometrical parameters is extracted. To evaluate vibrational behavior and thermo-mechanical efficiency of micro-cantilevers as a function of their geometrical parameters and input power, a case study with a specified vibrating frequency is considered. Due to significant complexities in the loading conditions and thermo-mechanical behavior, this task can only be tackled via numerical methods. Selecting the geometrical parameters in order to induce resonance at the nominal frequency, non-linear time-history (transient) thermo-mechanical finite element analysis (using ANSYS) is run on each configuration to study its response to the periodic heating input. Approaches to improve the effectiveness of actuators in each configuration based on their implementation are investigated.