Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately ...Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately threatening the stability of underground structures. In order to explore the mechanical properties of rocks under H-M coupling, the corresponding damage constitutive(D-C) model has become the focus of attention. Considering the inadequacy of the current research on rock strength parameters,energy evolution characteristics and D-C model under H-M coupling, the mechanical properties of typical sandstone samples are discussed based on laboratory tests. The results show that the variation of characteristic stresses of sandstone under H-M coupling conforms to the normalized attenuation equation and Mohr-Coulomb(M-C) criterion. The P-W pressure mechanism of sandstone exhibits a dynamic change from softening effect to H-M fracturing effect. The closure stress is mainly provided by cohesive strength, while the initiation stress, damage stress, and peak stress are jointly dominated by cohesive strength and friction strength. In addition, residual stress is attributed to the friction strength formed by the bite of the fracture surface. Subsequently, the energy evolution characteristics of sandstone under H-M coupling were studied, and it was found that P-W pressure weakened the energy storage capacity and energy dissipation capacity of sandstone, and H-M fracturing was an important factor in reducing its energy storage efficiency. Finally, combined with energy dissipation theory and statistical damage theory, two types of D-C models considering P-W pressure are proposed accordingly, and the model parameters can be determined by four methods. The application results indicate that the proposed and modified D-C models have high reliability, and can characterize the mechanical behavior of sandstone under H-M coupling, overcome the inconvenience of existing D-C models due to excessive mechanical parameters,and can be applied to the full-range stress–strain process. The results are conducive to revealing the deformation and damage mechanisms of rocks under H-M coupling, and can provide theoretical guidance for related engineering problems.展开更多
The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coup...The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coupling behaviors requires interdisciplinary efforts.Here,we design experiments under mechanical constraints and introduce an in-situ analytical framework to clarify the complex interaction mechanisms and coupling degrees among multi-physics fields.The proposed analytical framework integrates the parameterization of equivalent models,in-situ mechanical analysis,and quantitative assessment of coupling behavior.The results indicate that the significant impact of pressure on impedance at low temperatures results from the diffusion-controlled step,enhancing kinetics when external pressure,like 180 to 240 k Pa at 10℃,is applied.The diversity in control steps for the electrochemical reaction accounts for the varying impact of pressure on battery performance across different temperatures.The thermal expansion rate suggests that the swelling force varies by less than 1.60%per unit of elevated temperature during the lithiation process.By introducing a composite metric,we quantify the coupling correlation and intensity between characteristic parameters and physical fields,uncovering the highest coupling degree in electrochemical-thermal fields.These results underscore the potential of analytical approaches in revealing the mechanisms of interaction among multi-fields,with the goal of enhancing battery performance and advancing battery management.展开更多
The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of be...The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of bedded sandstones under identical osmotic pressure and various confining pressures were conducted.Then,the evolution curves of stress-strain,permeability and damage,macro-and mesoscopic failure characteristics were obtained.Subsequently,the mechanical behaviour was characterized,and finally the failure mechanism was revealed.The results showed that:(1)The failure of the sandstone with the bedding angle of 45°or 60°was the structure-dominant type,while that with the bedding angle of 0°,30°or 90°was the force-dominant type.(2)When the bedding angle was in the range of(0°,30°)or(45°,90°),the confining pressure played a dominant role in influencing the peak strength.However,withinβ∈(30°,45°),the bedding effect played a dominant role in the peak strength.(3)With the increase in bedding angle,the cohesion increased first,then decreased and finally increased,while the internal friction angle was the opposite.(4)When the bedding angle was 0°or 30°,the“water wedging”effect and the“bedding buckling”effect would lead to the forking or converging shear failure.When the bedding angle was 45°or 60°,the sliding friction effect would lead to the shear slipping failure.When the bedding angle was 90°,the combination of the“bedding buckling”effect and shear effect would lead to the mixed tension-shear failure.The above conclusions obtained are helpful for the prevention of water inrush disasters in water-rich roadways with different dips in coal mines.展开更多
The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are a...The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.展开更多
This work presents a novel radio frequency(RF)narrowband Si micro-electro-mechanical systems(MEMS)filter based on capacitively transduced slotted width extensional mode(WEM)resonators.The flexibility of the plate lead...This work presents a novel radio frequency(RF)narrowband Si micro-electro-mechanical systems(MEMS)filter based on capacitively transduced slotted width extensional mode(WEM)resonators.The flexibility of the plate leads to multiple modes near the target frequency.The high Q-factor resonators of around 100000 enable narrow bandwidth filters with small size and simplified design.The 1-wavelength and 2-wavelength WEMs were first developed as a pair of coupled modes to form a passband.To reduce bandwidth,two plates are coupled with aλ-length coupling beam.The 79.69 MHz coupled plate filter(CPF)achieved a narrow bandwidth of 8.8 kHz,corresponding to a tiny 0.011%.The CPF exhibits an impressive 34.84 dB stopband rejection and 7.82 dB insertion loss with near-zero passband ripple.In summary,the RF MEMS filter presented in this work shows promising potential for application in RF transceiver front-ends.展开更多
The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples...The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples of raw earth from 3 sites were taken in the commune of Mlomp. Geotechnical tests showed that the raw earth samples from sites 2 and 3 have more clay fraction while site 1 contains more sand. The fact of integrating fibers from crushed palm leaves (Borassus aethiopum) (2%, 4% and 6%) into the 3 raw earth samples reduced the mechanical resistance to compression and traction of the 3 raw earths. The experimental results of thermal tests on samples of earth mixtures with crushed Palma leaf fibers show a decrease in thermal conductivity as well as thermal effusivity as the percentages increase (2%, 4% and 6%) of fibers in raw earth for the 3 sites. This shows that this renewable composite material can help improve the thermal insulation of building envelopes.展开更多
The model of a locally resonant (LR) epoxy/PZT-4 phononic crystal (PC)nanobeam with “spring-mass” resonators periodically attached to epoxy is proposed. The corresponding band structures are calculated by coupling E...The model of a locally resonant (LR) epoxy/PZT-4 phononic crystal (PC)nanobeam with “spring-mass” resonators periodically attached to epoxy is proposed. The corresponding band structures are calculated by coupling Euler beam theory, nonlocal piezoelectricity theory and plane wave expansion (PWE) method. Three complete band gaps with the widest total width less than 10GHz can be formed in the proposed nanobeam by comprehensively comparing the band structures of three kinds of LR PC nanobeams with resonators attached or not. Furthermore, influencing rules of the coupling fields between electricity and mechanics,“spring-mass” resonator, nonlocal effect and different geometric parameters on the first three band gaps are discussed and summarized. All the investigations are expected to be applied to realize the active control of vibration in the region of ultrahigh frequency.展开更多
Thermo-Hydro-Mechanical (THM) coupling pro- cesses in unsaturated soils are very important in both theoretical researches and engineering applications. A coupled formulation based on hybrid mixture theory is derived...Thermo-Hydro-Mechanical (THM) coupling pro- cesses in unsaturated soils are very important in both theoretical researches and engineering applications. A coupled formulation based on hybrid mixture theory is derived to model the THM coupling behavior of unsaturated soils. The free-energy and dissipative functions for different phases are derived from Taylor's series expansions. Constitutive relations for THM coupled behaviors of unsaturated soils, which include deformation, entropy change, fluid flow, heat conduction, and dynamic compatibility conditions on the interfaces, are then established. The number of field equations is shown to be equal to the number of unknown variables; thus, a closure of this coupling problem is established. In addition to modifications of the physical conservation equations with coupling effect terms, the constitutive equations, which consider the coupling between elastoplastic deformation of the soil skeleton, fluid flow, and heat transfer, are also derived.展开更多
The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly i...The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly instable thermoelastic stress produced by the non uniform contact pressure of friction pair, a test method is applied to collect accurate contact pressure between the dual sheet steel and friction disk in the combining process. And then the heat-flow density and transient ther mo mechanical coupling simulation are analyzed. At the same time all possible boundary conditions are considered, such as the heat generation, heat conduction problem, relation between friction and contact, variation in load and heat change problem etc. The simulation results show that the me chanical model of thermo mechanical coupling can express well the dynamic characteristics of fric tion disk, and gives perfect reference for more study on thermoelastic distortion of brake friction pairs.展开更多
Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passe...Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passes by contact friction force between the billet and rollers. The rollers and billet are represented by respectively rigid and deformable bodies, and three-dimensional models are developed for the billet and rollers. The distribution of deformation field, effective strain, rolling force and temperature field are accurately calculated for the whole rolling process (including unstable and stable stages). In addition, the rolling pressure on the width symmetry center is compared with that in the in-situ experimental measurements. It is revealed that various heat exchange phenomena among the billet, rollers and surroundings can result in unbalanced temperature distribution on the cross section. Rolling force and strain can change significantly when the billet is moved towards or away from the roller gap, and keep almost invariable in the stable stage. It is expected that the simulation results would be useful for practical manufacture and provide the theoretical foundation for improvement of process planning and optimization of process parameters.展开更多
A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen wi...A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen with hydraulic pressure applied on its crack surface. Based on the newly derived formula, THM coupling fracture modes (including tensile, shear and mixed fracture mode) can be predicted by a new fracture criterion of stress intensity factor ratio, where the maximum axial load was measured by self-designed THM coupling fracture test. SEM analyses of THM coupling fractured surface indicate that the higher the temperature and hydraulic pressure are and the lower the confining pressure is, the more easily the intergranular (tension) fracture occurs. The transgranular (shear) fracture occurs in the opposite case while the mixed-mode fracture occurs in the middle case. The tested THM coupling fracture mechanisms are in good agreement with the predicted THM coupling fracture modes, which can verify correction of the newly-derived THM coupling stress intensity factor formula.展开更多
In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as...In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.展开更多
It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b...It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.展开更多
This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon redu...This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.展开更多
Steering the directional carrier migration across the interface is a central mission for efficient photocatalytic reactions.In this work,an atomic-shared heterointerface is constructed between the defect-rich ZnIn_(2)...Steering the directional carrier migration across the interface is a central mission for efficient photocatalytic reactions.In this work,an atomic-shared heterointerface is constructed between the defect-rich ZnIn_(2)S_(4)(HVs-ZIS)and CoIn_(2)S_(4)(CIS)via a defect-guided heteroepitaxial growth strategy.The strong interface coupling induces adequate carriers exchanging passageway between HVs-ZIS and CIS,enhancing the internal electric field(IEF)in the ZnIn_(2)S_(4)/CoIn_(2)S_(4)(HVs-ZIS/CIS)heterostructure.The defect structure in HVs-ZIS induces an additional defect level,improving the separation efficiency of photocarriers.Moreover,promoted by the IEF and intimate heterointerface,photogenerated electrons trapped by the defect level can migrate to the valence band of CIS,contributing to massive photogenerated electrons with intense reducibility in HVs-ZIS/CIS.Consequently,the HVs-ZIS/CIS heterostructure performs a boosted H_(2)evolution activity of 33.65 mmol g^(-1)h^(-1).This work highlights the synergistic effects of defect and strong interface coupling in regulating carrier transfer and paves a brave avenue for constructing efficient heterostructure photocatalysts.展开更多
To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ...To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth.展开更多
Laying the under-sleeper pad(USP)is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload.To explore the impact of application of the USP on the dynamic and static me...Laying the under-sleeper pad(USP)is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload.To explore the impact of application of the USP on the dynamic and static mechanical behavior of the ballast track in the heavy-haul railway system,numerical simulation models of the ballast bed with USP and without USP are presented in this paper by using the discrete element method(DEM)-multi-flexible body dynamic(MFBD)coupling analysis method.The ballast bed support stiffness test and dynamic displacement tests were carried out on the actual operation of a heavy-haul railway line to verify the validity of the models.The results show that using the USP results in a 43.01%reduction in the ballast bed support stiffness and achieves a more uniform distribution of track loads on the sleepers.It effectively reduces the load borne by the sleeper directly under the wheel load,with a 7.89%reduction in the pressure on the sleeper.Furthermore,the laying of the USP changes the lateral resistance sharing ratio of the ballast bed,significantly reducing the stress level of the ballast bed under train loads,with an average stress reduction of 42.19 kPa.It also reduces the plastic displacement of ballast particles and lowers the peak value of rotational angular velocity by about 50%to 70%,which is conducive to slowing down ballast bed settlement deformation and reducing maintenance costs.In summary,laying the USP has a potential value in enhancing the stability and extending the lifespan of the ballast bed in heavy-haul railway systems.展开更多
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ...High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.展开更多
3-D rigid-viscoplastic FEM of compressible materials was applied to analyze the deformation behavior during twist compression forming of axisymmetrical body at high temperatures. When calculating the temperature fiel...3-D rigid-viscoplastic FEM of compressible materials was applied to analyze the deformation behavior during twist compression forming of axisymmetrical body at high temperatures. When calculating the temperature fields, considering the thermo mechanical coupling effect between temperature and deformation, 2-D FEM and CNG methods were adopted, and the up winding technique was used to avoid the influences of numerical instability on calculated results.展开更多
The effects of types and amounts of silane coupling agent on mechanical properties of vuleanized rubber microwave absorbing patch (VRMAP) were studied. The mechanisms of silane coupling agent's effects on mechanica...The effects of types and amounts of silane coupling agent on mechanical properties of vuleanized rubber microwave absorbing patch (VRMAP) were studied. The mechanisms of silane coupling agent's effects on mechanical properties of rubber microwave absorbing patch ( RMAP ) and microvave absorbing patch's (MAP's) mierostrueture were also discussed by using SEM and FT-IR. The experimental results show that the tensile strength of RMAP could be increased through adding the filler of carbonyl iron powder (CIP) modified by silane coupling agent. RMAP fiUed with CIP, which was treated by silane coupling agent KH550, possessed a high tensile strength of 11.5 MPa, which was 448% more than that of MAP whose filler wus not modified by any coupling agent. It was found that the optimal amount of KH550 was 1.0 phr to 100.0 phr carbonyl iron powder. The effects of different modifying techniques on RMAP's mechanical properties were also inrestigated. It is indieated that MAP whose filler is modified by the wet process has the highest tensile strength, but it is not the optimal modiifying technique due to complieated wet process. On the contrary, the dry process was very simple, and VRMAP possessed fairly high mechanical properties, therefore, it was the perfect modifying process.展开更多
基金funding support from the National Natural Science Foundation of China(Nos.52174088 and 42277154)the Independent Innovation Research Fund Graduate Free Exploration Project(No.104972024JYS0007)supported by Wuhan University of Technology.
文摘Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately threatening the stability of underground structures. In order to explore the mechanical properties of rocks under H-M coupling, the corresponding damage constitutive(D-C) model has become the focus of attention. Considering the inadequacy of the current research on rock strength parameters,energy evolution characteristics and D-C model under H-M coupling, the mechanical properties of typical sandstone samples are discussed based on laboratory tests. The results show that the variation of characteristic stresses of sandstone under H-M coupling conforms to the normalized attenuation equation and Mohr-Coulomb(M-C) criterion. The P-W pressure mechanism of sandstone exhibits a dynamic change from softening effect to H-M fracturing effect. The closure stress is mainly provided by cohesive strength, while the initiation stress, damage stress, and peak stress are jointly dominated by cohesive strength and friction strength. In addition, residual stress is attributed to the friction strength formed by the bite of the fracture surface. Subsequently, the energy evolution characteristics of sandstone under H-M coupling were studied, and it was found that P-W pressure weakened the energy storage capacity and energy dissipation capacity of sandstone, and H-M fracturing was an important factor in reducing its energy storage efficiency. Finally, combined with energy dissipation theory and statistical damage theory, two types of D-C models considering P-W pressure are proposed accordingly, and the model parameters can be determined by four methods. The application results indicate that the proposed and modified D-C models have high reliability, and can characterize the mechanical behavior of sandstone under H-M coupling, overcome the inconvenience of existing D-C models due to excessive mechanical parameters,and can be applied to the full-range stress–strain process. The results are conducive to revealing the deformation and damage mechanisms of rocks under H-M coupling, and can provide theoretical guidance for related engineering problems.
基金supported by the National Science Fund for Excellent Youth Scholars of China(52222708)the National Natural Science Foundation of China(51977007)。
文摘The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coupling behaviors requires interdisciplinary efforts.Here,we design experiments under mechanical constraints and introduce an in-situ analytical framework to clarify the complex interaction mechanisms and coupling degrees among multi-physics fields.The proposed analytical framework integrates the parameterization of equivalent models,in-situ mechanical analysis,and quantitative assessment of coupling behavior.The results indicate that the significant impact of pressure on impedance at low temperatures results from the diffusion-controlled step,enhancing kinetics when external pressure,like 180 to 240 k Pa at 10℃,is applied.The diversity in control steps for the electrochemical reaction accounts for the varying impact of pressure on battery performance across different temperatures.The thermal expansion rate suggests that the swelling force varies by less than 1.60%per unit of elevated temperature during the lithiation process.By introducing a composite metric,we quantify the coupling correlation and intensity between characteristic parameters and physical fields,uncovering the highest coupling degree in electrochemical-thermal fields.These results underscore the potential of analytical approaches in revealing the mechanisms of interaction among multi-fields,with the goal of enhancing battery performance and advancing battery management.
基金supported by the National Natural Science Foundation of China(Grant Nos.52034009 and 51974319)the Yue Qi Distinguished Scholar Project(Grant No.2020JCB01).
文摘The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of bedded sandstones under identical osmotic pressure and various confining pressures were conducted.Then,the evolution curves of stress-strain,permeability and damage,macro-and mesoscopic failure characteristics were obtained.Subsequently,the mechanical behaviour was characterized,and finally the failure mechanism was revealed.The results showed that:(1)The failure of the sandstone with the bedding angle of 45°or 60°was the structure-dominant type,while that with the bedding angle of 0°,30°or 90°was the force-dominant type.(2)When the bedding angle was in the range of(0°,30°)or(45°,90°),the confining pressure played a dominant role in influencing the peak strength.However,withinβ∈(30°,45°),the bedding effect played a dominant role in the peak strength.(3)With the increase in bedding angle,the cohesion increased first,then decreased and finally increased,while the internal friction angle was the opposite.(4)When the bedding angle was 0°or 30°,the“water wedging”effect and the“bedding buckling”effect would lead to the forking or converging shear failure.When the bedding angle was 45°or 60°,the sliding friction effect would lead to the shear slipping failure.When the bedding angle was 90°,the combination of the“bedding buckling”effect and shear effect would lead to the mixed tension-shear failure.The above conclusions obtained are helpful for the prevention of water inrush disasters in water-rich roadways with different dips in coal mines.
基金Project supported by the National Natural Science Foundation of China(No.12372005)。
文摘The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.
基金supported by the National Natural Science Foundation of China(61734007)National Key Research and Development Program of China(2022YFF0706100).
文摘This work presents a novel radio frequency(RF)narrowband Si micro-electro-mechanical systems(MEMS)filter based on capacitively transduced slotted width extensional mode(WEM)resonators.The flexibility of the plate leads to multiple modes near the target frequency.The high Q-factor resonators of around 100000 enable narrow bandwidth filters with small size and simplified design.The 1-wavelength and 2-wavelength WEMs were first developed as a pair of coupled modes to form a passband.To reduce bandwidth,two plates are coupled with aλ-length coupling beam.The 79.69 MHz coupled plate filter(CPF)achieved a narrow bandwidth of 8.8 kHz,corresponding to a tiny 0.011%.The CPF exhibits an impressive 34.84 dB stopband rejection and 7.82 dB insertion loss with near-zero passband ripple.In summary,the RF MEMS filter presented in this work shows promising potential for application in RF transceiver front-ends.
文摘The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples of raw earth from 3 sites were taken in the commune of Mlomp. Geotechnical tests showed that the raw earth samples from sites 2 and 3 have more clay fraction while site 1 contains more sand. The fact of integrating fibers from crushed palm leaves (Borassus aethiopum) (2%, 4% and 6%) into the 3 raw earth samples reduced the mechanical resistance to compression and traction of the 3 raw earths. The experimental results of thermal tests on samples of earth mixtures with crushed Palma leaf fibers show a decrease in thermal conductivity as well as thermal effusivity as the percentages increase (2%, 4% and 6%) of fibers in raw earth for the 3 sites. This shows that this renewable composite material can help improve the thermal insulation of building envelopes.
基金supported by the National Natural Science Foundation of China(51979130,11847009)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China(22KJB580005)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX221961)。
文摘The model of a locally resonant (LR) epoxy/PZT-4 phononic crystal (PC)nanobeam with “spring-mass” resonators periodically attached to epoxy is proposed. The corresponding band structures are calculated by coupling Euler beam theory, nonlocal piezoelectricity theory and plane wave expansion (PWE) method. Three complete band gaps with the widest total width less than 10GHz can be formed in the proposed nanobeam by comprehensively comparing the band structures of three kinds of LR PC nanobeams with resonators attached or not. Furthermore, influencing rules of the coupling fields between electricity and mechanics,“spring-mass” resonator, nonlocal effect and different geometric parameters on the first three band gaps are discussed and summarized. All the investigations are expected to be applied to realize the active control of vibration in the region of ultrahigh frequency.
基金supported by the National Natural Science Foundation of China(51208031 and 51278047)the National Basic Research Program of China(2010CB732100)
文摘Thermo-Hydro-Mechanical (THM) coupling pro- cesses in unsaturated soils are very important in both theoretical researches and engineering applications. A coupled formulation based on hybrid mixture theory is derived to model the THM coupling behavior of unsaturated soils. The free-energy and dissipative functions for different phases are derived from Taylor's series expansions. Constitutive relations for THM coupled behaviors of unsaturated soils, which include deformation, entropy change, fluid flow, heat conduction, and dynamic compatibility conditions on the interfaces, are then established. The number of field equations is shown to be equal to the number of unknown variables; thus, a closure of this coupling problem is established. In addition to modifications of the physical conservation equations with coupling effect terms, the constitutive equations, which consider the coupling between elastoplastic deformation of the soil skeleton, fluid flow, and heat transfer, are also derived.
基金Supported by the National Basic Research Program of China("973"Program)(613002)
文摘The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly instable thermoelastic stress produced by the non uniform contact pressure of friction pair, a test method is applied to collect accurate contact pressure between the dual sheet steel and friction disk in the combining process. And then the heat-flow density and transient ther mo mechanical coupling simulation are analyzed. At the same time all possible boundary conditions are considered, such as the heat generation, heat conduction problem, relation between friction and contact, variation in load and heat change problem etc. The simulation results show that the me chanical model of thermo mechanical coupling can express well the dynamic characteristics of fric tion disk, and gives perfect reference for more study on thermoelastic distortion of brake friction pairs.
基金Funded by National Natural Science Foundation of China (No. 51004047)Scientific Research Fund of Hunan Provincial Education Department (No. 10B020)Provincial Natural Science Foundation of Hunan (No. 09jj4024)
文摘Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passes by contact friction force between the billet and rollers. The rollers and billet are represented by respectively rigid and deformable bodies, and three-dimensional models are developed for the billet and rollers. The distribution of deformation field, effective strain, rolling force and temperature field are accurately calculated for the whole rolling process (including unstable and stable stages). In addition, the rolling pressure on the width symmetry center is compared with that in the in-situ experimental measurements. It is revealed that various heat exchange phenomena among the billet, rollers and surroundings can result in unbalanced temperature distribution on the cross section. Rolling force and strain can change significantly when the billet is moved towards or away from the roller gap, and keep almost invariable in the stable stage. It is expected that the simulation results would be useful for practical manufacture and provide the theoretical foundation for improvement of process planning and optimization of process parameters.
基金Project(11072269)supported by the National Natural Science Foundation of ChinaProject(20090162110066)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen with hydraulic pressure applied on its crack surface. Based on the newly derived formula, THM coupling fracture modes (including tensile, shear and mixed fracture mode) can be predicted by a new fracture criterion of stress intensity factor ratio, where the maximum axial load was measured by self-designed THM coupling fracture test. SEM analyses of THM coupling fractured surface indicate that the higher the temperature and hydraulic pressure are and the lower the confining pressure is, the more easily the intergranular (tension) fracture occurs. The transgranular (shear) fracture occurs in the opposite case while the mixed-mode fracture occurs in the middle case. The tested THM coupling fracture mechanisms are in good agreement with the predicted THM coupling fracture modes, which can verify correction of the newly-derived THM coupling stress intensity factor formula.
文摘In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.
基金supported by the Key Research and Development Plan of Shandong Province(the Major Scientific and Technological Innovation Projects,2021ZDSYS13)the Natural Science Foundation of Shandong Province(ZR2021MB135)Natural Science Foundation of Shandong Province(ZR2021ME224).
文摘It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.
文摘This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.
基金supported by the National Natural Science Foundation of China(52072196,52002200,52102106,52202262,22379081,22379080)the Major Basic Research Program of Natural Science Foundation of Shandong Province(ZR2020ZD09)+1 种基金the Natural Science Foundation of Shandong Province(ZR2020QE063,ZR202108180009,ZR2023QE059)the Project funded by China Postdoctoral Science Foundation(2023M741871)。
文摘Steering the directional carrier migration across the interface is a central mission for efficient photocatalytic reactions.In this work,an atomic-shared heterointerface is constructed between the defect-rich ZnIn_(2)S_(4)(HVs-ZIS)and CoIn_(2)S_(4)(CIS)via a defect-guided heteroepitaxial growth strategy.The strong interface coupling induces adequate carriers exchanging passageway between HVs-ZIS and CIS,enhancing the internal electric field(IEF)in the ZnIn_(2)S_(4)/CoIn_(2)S_(4)(HVs-ZIS/CIS)heterostructure.The defect structure in HVs-ZIS induces an additional defect level,improving the separation efficiency of photocarriers.Moreover,promoted by the IEF and intimate heterointerface,photogenerated electrons trapped by the defect level can migrate to the valence band of CIS,contributing to massive photogenerated electrons with intense reducibility in HVs-ZIS/CIS.Consequently,the HVs-ZIS/CIS heterostructure performs a boosted H_(2)evolution activity of 33.65 mmol g^(-1)h^(-1).This work highlights the synergistic effects of defect and strong interface coupling in regulating carrier transfer and paves a brave avenue for constructing efficient heterostructure photocatalysts.
基金supported by the National Natural Science Foundation of China(No.U1965203).
文摘To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth.
基金the project supported by the National Natural Science Foundation of China(Grant No.52372425)the Fundamental Research Funds for the Central Universities(Science and technology leading talent team project)(Grant No.2022JBXT010).
文摘Laying the under-sleeper pad(USP)is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload.To explore the impact of application of the USP on the dynamic and static mechanical behavior of the ballast track in the heavy-haul railway system,numerical simulation models of the ballast bed with USP and without USP are presented in this paper by using the discrete element method(DEM)-multi-flexible body dynamic(MFBD)coupling analysis method.The ballast bed support stiffness test and dynamic displacement tests were carried out on the actual operation of a heavy-haul railway line to verify the validity of the models.The results show that using the USP results in a 43.01%reduction in the ballast bed support stiffness and achieves a more uniform distribution of track loads on the sleepers.It effectively reduces the load borne by the sleeper directly under the wheel load,with a 7.89%reduction in the pressure on the sleeper.Furthermore,the laying of the USP changes the lateral resistance sharing ratio of the ballast bed,significantly reducing the stress level of the ballast bed under train loads,with an average stress reduction of 42.19 kPa.It also reduces the plastic displacement of ballast particles and lowers the peak value of rotational angular velocity by about 50%to 70%,which is conducive to slowing down ballast bed settlement deformation and reducing maintenance costs.In summary,laying the USP has a potential value in enhancing the stability and extending the lifespan of the ballast bed in heavy-haul railway systems.
基金supported by the National Natural Science Foundation of China(Nos.51839009 and 52027814)the Natural Science Foundation of Hubei Province(No.2023AFB589).
文摘High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.
文摘3-D rigid-viscoplastic FEM of compressible materials was applied to analyze the deformation behavior during twist compression forming of axisymmetrical body at high temperatures. When calculating the temperature fields, considering the thermo mechanical coupling effect between temperature and deformation, 2-D FEM and CNG methods were adopted, and the up winding technique was used to avoid the influences of numerical instability on calculated results.
文摘The effects of types and amounts of silane coupling agent on mechanical properties of vuleanized rubber microwave absorbing patch (VRMAP) were studied. The mechanisms of silane coupling agent's effects on mechanical properties of rubber microwave absorbing patch ( RMAP ) and microvave absorbing patch's (MAP's) mierostrueture were also discussed by using SEM and FT-IR. The experimental results show that the tensile strength of RMAP could be increased through adding the filler of carbonyl iron powder (CIP) modified by silane coupling agent. RMAP fiUed with CIP, which was treated by silane coupling agent KH550, possessed a high tensile strength of 11.5 MPa, which was 448% more than that of MAP whose filler wus not modified by any coupling agent. It was found that the optimal amount of KH550 was 1.0 phr to 100.0 phr carbonyl iron powder. The effects of different modifying techniques on RMAP's mechanical properties were also inrestigated. It is indieated that MAP whose filler is modified by the wet process has the highest tensile strength, but it is not the optimal modiifying technique due to complieated wet process. On the contrary, the dry process was very simple, and VRMAP possessed fairly high mechanical properties, therefore, it was the perfect modifying process.