期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach 被引量:7
1
作者 Cao Changmin Ye Taohong Zhao Majie 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1316-1327,共12页
Large eddy simulations (LES) have been performed to investigate the flow and combustion fields in the scramjet of the German Aerospace Center (DLR). Turbulent combustion is mod- eled by the tabulated thermo-chemis... Large eddy simulations (LES) have been performed to investigate the flow and combustion fields in the scramjet of the German Aerospace Center (DLR). Turbulent combustion is mod- eled by the tabulated thermo-chemistry approach in combination with the presumed probability density function (PDF). A/3-function is used to model the distribution of the mixture fraction, while two different PDFs, g-function (Model I) and //-function (Model II), are applied to model the reaction progress. Temperature is obtained by solving filtered energy transport equation and the reaction rate of the progress variable is rescaled by pressure to consider the effects of compressibil- ity. The adaptive mesh refinement (AMR) technique is used to properly capture shock waves, boundary layers, shear layers and flame structures. Statistical results of temperature and velocity predicted by Model II show better accuracy than that predicted by Model I. The results of scatter points and mixture fraction-conditional variables indicate the significant differences between Model I and Model II. It is concluded that second moment information in the presumed PDF of the reaction progress is very important in the simulation of supersonic combustion. It is also found that an unstable flame with extinction and ignition develops in the shear layers of bluff body and a fuel- rich partially premixed flame stabilizes in the central recirculation bubble. 展开更多
关键词 Large eddy simulation(LES) Presumed probability densityfunction (PDF) Scram jet Tabulated thermo-chemistry Turbulent combustion model
原文传递
Heat Capacity and Bond Dissociation Energy Calculations of Some Fluorinated Ethanol’s and its Radicals: CH<sub>3-x</sub>CH<sub>2</sub>F<sub>x</sub>OH, CH<sub>3</sub>CH<sub>2-x</sub>F<sub>x</sub>OH
2
作者 Hebah M. Abdel-Wahab Joseph W. Bozzelli 《Open Journal of Physical Chemistry》 2021年第2期13-53,共41页
Structures and thermochemical properties of these species were determined by the gaussian M-062x/6-31 + g (d, p) calculation enthalpies of formation for 19 fluorinated ethanol and some radicals were calculated with a ... Structures and thermochemical properties of these species were determined by the gaussian M-062x/6-31 + g (d, p) calculation enthalpies of formation for 19 fluorinated ethanol and some radicals were calculated with a popular <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i></i></span></span></span></span></span></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">Ab initio</span></i></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span></span></span></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and density functional theory methods: The gaussian M-062x/6-31</span></span></span></span></span></span><span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">+ g (d, p) via several series of isodesmic reactions. Entropies (S298</span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">°K</span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> in Cal</span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Mol</span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sup><span style="font-family:Verdana;">-</span></sup></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sup><span style="font-family:Verdana;">1</span></sup></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> K</span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sup><span style="font-family:Verdana;">-</span></sup></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sup><span style="font-family:Verdana;">1</span></sup></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">) were estimated using the M-062x/6-31</span></span></span></span></span></span><span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">+ g (d, p) computed frequencies and geometries. Contributions of entropy, S298</span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">°K</span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, and heat capacities, Cp(T) due to vibration, translation, and external rotation of the molecules were calculated based on the vibration frequencies and structures obtained from the M-062x/6-31</span></span></span></span></span></span><span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">+ g (d, p) Density Functional Method. Potential barriers are calculated using M-062x/6-31 + g (d, p) density functional method and are used to calculate rotor contributions to entropy and heat capacity using integration over energy levels of rotational potential. Rotational barriers were determined and hindered internal rotational contributions for S298</span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">° </span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">- 1500</span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">°K</span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, and Cp</span></span></span></span></span></span><span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(T) were calculated using the rigid rotor harmonic oscillator approximation, with direct integration over energy levels of the intramolecular rotation potential energy curves. Thermochemical properties of fluorinated alcohols are needed for understanding their stability and reactions in the environment and in thermal process</span></span></span></span></span></span> 展开更多
关键词 thermo-chemistry Enthalpy Fluorinated Ethanol’s Thermochemical Properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部