In this paper we report the results of Micromegas prototypes constructed by attaching micromesh to an anode using thermo-bond films. The excellent metal attaching ability and good dielectical property of this kind of ...In this paper we report the results of Micromegas prototypes constructed by attaching micromesh to an anode using thermo-bond films. The excellent metal attaching ability and good dielectical property of this kind of film make it a promising material to be used as avalanche gap spacers. Several prototypes are successfully made. The electron transmission properties are first studied and then the gas gain is measured in argon-isobutane mixtures. The maximum gain of more than 104 is easily obtained. The energy resolutions for 55Fe 5.9 keV K~ ray can be better than 20% over one magnitude in gain for different operational gas mixtures and the best energy resolution of 13.7% (FWHM) can be achieved with the gas mixture of 94% argon concentration. The preliminary test results of the prototypes with sensitive area of 45 mm×45 mm without internal support show good uniformity across the sensitive area.展开更多
Disposable hygiene products have evolved into the important parts for millions of people around the world,enhancing the convenience of daily lives.However,development of the disposable hygiene products is restricted b...Disposable hygiene products have evolved into the important parts for millions of people around the world,enhancing the convenience of daily lives.However,development of the disposable hygiene products is restricted by unsustainable production technology,complicated operation process,and poor liquid absorption performance of the absorbent core.Herein,integrated and three-dimensional(3D)multifunctional superabsorbent nonwovens with liquid-triggered fragrance release was prepared via green,fast and scalable multi efect hot-air anchoring method which physically crosslinking the joint thermobonding fbers and anchoring fragrance microcapsules/super absorbent polymer(SAP)onto adjacent thermo-bonding fbers simultaneously.The resulting composite nonwovens could three-dimensionally absorb water 33.14 times of its own weight without gel blockage between SAP,and correspondingly release increased intensity fragrance along with enhancing amount of water absorption.Absorption rate t1 and t2 is 83.62%and 50.62%higher than the commercial specimen respectively,and the air permeability is increased by 226.88%compared with the commercial specimen.The superabsorbent nonwovens with controllable fragrance release and odorant synergistic has the potential to be practically applied to functional textiles felds because of the excellent liquid absorption and controlled fragrance release performance,and is easy to be produced on a sustainable,pollution-free and large-scale industrial production.展开更多
基金Supported by National Natural Science Foundation of China (10775132)
文摘In this paper we report the results of Micromegas prototypes constructed by attaching micromesh to an anode using thermo-bond films. The excellent metal attaching ability and good dielectical property of this kind of film make it a promising material to be used as avalanche gap spacers. Several prototypes are successfully made. The electron transmission properties are first studied and then the gas gain is measured in argon-isobutane mixtures. The maximum gain of more than 104 is easily obtained. The energy resolutions for 55Fe 5.9 keV K~ ray can be better than 20% over one magnitude in gain for different operational gas mixtures and the best energy resolution of 13.7% (FWHM) can be achieved with the gas mixture of 94% argon concentration. The preliminary test results of the prototypes with sensitive area of 45 mm×45 mm without internal support show good uniformity across the sensitive area.
基金This research was supported by Capacity building project of local universities Science and Technology Commission of Shanghai Municipality(19090503500)National Natural Science Foundation of China(51803028,2018)+4 种基金Shanghai Gaofeng&Gaoyuan Project for University Academic Program Development,China Postdoctoral Science Foundation(2020M681125)DHU Distinguished Young Professor Programthe Fundamental Research Funds for the Central Universitiesthe Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University(CUSF-DH-D-2021020).
文摘Disposable hygiene products have evolved into the important parts for millions of people around the world,enhancing the convenience of daily lives.However,development of the disposable hygiene products is restricted by unsustainable production technology,complicated operation process,and poor liquid absorption performance of the absorbent core.Herein,integrated and three-dimensional(3D)multifunctional superabsorbent nonwovens with liquid-triggered fragrance release was prepared via green,fast and scalable multi efect hot-air anchoring method which physically crosslinking the joint thermobonding fbers and anchoring fragrance microcapsules/super absorbent polymer(SAP)onto adjacent thermo-bonding fbers simultaneously.The resulting composite nonwovens could three-dimensionally absorb water 33.14 times of its own weight without gel blockage between SAP,and correspondingly release increased intensity fragrance along with enhancing amount of water absorption.Absorption rate t1 and t2 is 83.62%and 50.62%higher than the commercial specimen respectively,and the air permeability is increased by 226.88%compared with the commercial specimen.The superabsorbent nonwovens with controllable fragrance release and odorant synergistic has the potential to be practically applied to functional textiles felds because of the excellent liquid absorption and controlled fragrance release performance,and is easy to be produced on a sustainable,pollution-free and large-scale industrial production.