The effect of rare earth doping on thermo-physical properties of lanthanum zirconate was investigated. Oxide powders of various compositions La2Zr2O7 were synthesized by coprecipitation-calcination method. High-temper...The effect of rare earth doping on thermo-physical properties of lanthanum zirconate was investigated. Oxide powders of various compositions La2Zr2O7 were synthesized by coprecipitation-calcination method. High-temperature dilatometer, DSC, and laser thermal diffusivity methods were used to analyze thermal expansion coefficient (TEC), specific heat, and thermal diffusivity. The results showed that CeO2 doped pyrochlores La2(Zr1.8Ce0.2)2O7 and La1.7(DyNd)0.15(Zr0.8Ce0.2)2O7 had higher TEC than La2Zr2O7 and La1.7Dy0.3Zr2O7. La2(Zr1.8Ce0.2)2O7, La1.7Dy0.3Zr2O7, and La1.7(DyNd)0.15(Zr0.8Ce0.2)2O7 had lower thermal conductivity than undoped La2Zr2O7. The Dy2O3, Nd2O3, and CeO2 codoped composition showed the lowest thermal conductivity and the highest TEC. Thermo-physical results also indicated that TEC of rare earth oxide doped La2Zr2O7 ceramic was slightly higher than that of conventional ZrO2-8Wt.% Y2O3 (8YSZ), and its thermal conductivity was lower than that of 8YSZ.展开更多
It is well known that the use of woods as construction materials can embody carbon content of structural members,which can enhance the urban sustainability.However,due to the combustibility of wood,its current applica...It is well known that the use of woods as construction materials can embody carbon content of structural members,which can enhance the urban sustainability.However,due to the combustibility of wood,its current application is restricted.To broaden the application of wood,its thermal responses exposed to fire(high temperature)is investigated in this study.Firstly,the wood kinetic parameters are determined by coats-redfern method using thermal gravimetric(TGA)data.Secondly,the density and thermal conductivity are obtained from parallel and series models.Thirdly,the specific heat capacity formula is presented considering latent and decomposition heat,which can be directly determined by differential scanning calorimetry(DSC).Finally,the one-dimensional nonlinear heat transfer model with apparent thermo-physical properties is proposed.The four-sided heating experiment of Laminated Veneer Lumber(LVL)is carried out to investigate the temperature filed.The results show that the proposed model can predict the thermal responses of timber structures subjected to fire and high temperatures precisely.展开更多
Al-high Si alloys were designed by the addition of Cu or Mg alloying elements to improve the mechanical properties. It is found that the addition of 1 wt.% Cu or 1 wt.% Mg as strengthening elements significantly impro...Al-high Si alloys were designed by the addition of Cu or Mg alloying elements to improve the mechanical properties. It is found that the addition of 1 wt.% Cu or 1 wt.% Mg as strengthening elements significantly improves the tensile strength by 27.2% and 24.5%, respectively. This phenomenon is attributed to the formation of uniformly dispersed fine particles(Al2Cu and Mg2Si secondary phases) in the Al matrix during hot press sintering of the rapidly solidified(gas atomization) powder. The thermal conductivity of the Al-50 Si alloys is reduced with the addition of Cu or Mg, by only 7.3% and 6.8%, respectively. Therefore, the strength of the Al-50 Si alloys is enhanced while maintaining their excellent thermo-physical properties by adding 1% Cu(Mg).展开更多
The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little ...The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little attention is being given.This work aims to valorize the waste of the trunks of banana trees to be used in construction.Firstly,the physicochemical properties of the fiber,such as the percentage of crystallization and its morphology,have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana fibers,with the purpose to promote the use of this material in construction.Secondly,the results obtained with the gypsum matrix allowed us to note a preponderant improvement in the composite’s thermal properties thanks to the variation of the banana fiber additive.Thirdly,the impact of the nature of the banana fiber distribution(either fiber mixed in matrix or fiber series model)on the flexural and compressive strengths of the composites was studied.The results obtained indicate that the insulation gain reaches up to 40%.It depends on the volume fraction and type of distribution of the banana fibers.However,the thermal inertia of the composites developed,represented by thermal diffusivity and thermal effusivity,was studied.Results indicate a gain of 40%and 25%,respectively,in terms of thermal diffusivity and thermal effusivity of the developed composites compared to plaster alone.Concerning the mechanical properties,the flexural strength depends on the percentage of the volume fraction of banana fibers used,and it can reach 20%more than the flexural strength of plaster;nevertheless,there is a significant loss in terms of the compressive strength of the studied composites.The results obtained are confirmed by the microstructure of the fiber banana.In fact,the morphology of the banana fibers was improved by the drying process.It reduces the amorphous area and improves the cellulosic crystalline surfaces,which assures good adhesion between the fiber and the matrix plaster.Finally,the dimensionless coefficient analysis was done to judge the optimal proportion of the banana fiber additive and to recommend its use even on false ceilings or walls.展开更多
Rare earth oxides doped hafnia ceramics,with a formula of Hf0.76LnxY0.24-xO1.88(Ln=Gd,Yb,Gd+Yb or La+Yb),were prepared by solid state sintering at 1500℃.The effects of the rare earth oxides on the microstructures,sin...Rare earth oxides doped hafnia ceramics,with a formula of Hf0.76LnxY0.24-xO1.88(Ln=Gd,Yb,Gd+Yb or La+Yb),were prepared by solid state sintering at 1500℃.The effects of the rare earth oxides on the microstructures,sintering resistance,and thermo-physical properties of the doped hafnia ceramics were investigated.Results show that the Gd-Y,Yb-Y or Gd-Yb-Y co-doped hafnia ceramics remain the same defect fluorite(F)structure,while the La-Yb-Y co-doped hafnia revealing coexistence of pyrochlore(P)and fluorite structures.Yb-Y co-doped samples exhibited much better sintering resistance compared with Gd-Y and Gd-Yb-Y co-doped samples.The coexistence of P and F phases is beneficial to improved sintering capability.The thermal conductivities of the Gd-Y,Yb-Y and Gd-Yb-Y doped samples are relatively lower(1.4-1.7 W m^(-1)K^(-1)at 1200℃),but for the La-Yb-Y co-doped samples,the thermal conductivity increases dramatically with temperature due to increased thermal radiation at high-temperature.The average thermal expansion coefficients(TECs)of the Gd-Y,Yb-Y and Gd-Yb-Y co-doped samples are as high as10.3×10^(-6)K^(-1) in temperature range between 200-1200℃.展开更多
This study was carried out to determine the thermo-physical properties of rubber seed in the moisture range of 9.1%to 14.8%(w.b.).The length,width,thickness,measured surface area,bulk density and true density increase...This study was carried out to determine the thermo-physical properties of rubber seed in the moisture range of 9.1%to 14.8%(w.b.).The length,width,thickness,measured surface area,bulk density and true density increased with increasing moisture content with high coefficients of determination(significant at p<0.05).Their optimum values at 14.8%moisture content were 17.00 mm,11.94 mm,8.26 mm,285.20 mm^(2),295.00 kg/m^(3) and 470.67 kg/m^(3),respectively.The angle of repose increased as moisture content increased with low coefficient of determination and has optimum value of 28.81°at 14.8%moisture content.The specific heat capacity and thermal conductivity decreased linearly while thermal diffusivity increased exponentially with an increase in moisture content(significant at p<0.05).The optimum values of specific heat capacity,thermal conductivity and diffusivity at 14.8%moisture content were 55.84 kJ/(kg.K),0.032 W/(m.K)and 1.93×10^(-9) m^(2)/s,respectively.The results are essential in the design of storage structure for rubber seed.展开更多
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) with optimum band gaps about 1.5 eV are important absorbers for solar cells. The elastic constants and the thermo-physical properties of the stannite-type CZTS and CZTSe are cal...Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) with optimum band gaps about 1.5 eV are important absorbers for solar cells. The elastic constants and the thermo-physical properties of the stannite-type CZTS and CZTSe are calculated by using density-functional theory (DFT) and the quasi-harmonic Debye model. The bonding strength along the [100] and [010] directions is the same to that along the [001] direction and the shear elastic properties of the {001} plane are anisotropic for CZTS and CZTSe. Both compounds exhibit ductile behavior due to their high ratio of bulk modulus to shear modulus (K/G). The values of thermal capacity are close to 200 J/(mol·K) at above 300 K, and the thermal expansion coefficients decrease with increasing pressure at same temperature. The entropy is variable by power-exponent, and the internal energy is almost linear with increasing temperature for CZTS and CZTSe. The Gibbs energy of CZTS is lower than that of CZTSe under same temperature and pressure. The Debye temperatures are 297 and 232 K, and Grneisen parameters are 2.36 and 2.37 for CZTS and CZTSe at 300 K, respectively.展开更多
The role of multicomponent rare earth oxides in phase stability, thermophysical properties and sintering for ZrO2-based thermal barrier coatings (TBCs) materials is investigated. 8YSZ codoped with 3 mol% Gd2O3 and 3...The role of multicomponent rare earth oxides in phase stability, thermophysical properties and sintering for ZrO2-based thermal barrier coatings (TBCs) materials is investigated. 8YSZ codoped with 3 mol% Gd2O3 and 3 mol% Yb2O3 (GYb-YSZ) powders are synthesized by solid state reaction for 24 h at various temperatures. As temperature increases, stabilizers are dissolved into zirconia matrix gradually. Synthesized at 1 500 °C, GYb-YSZ is basically composed of cubic phase. GYb-YSZ exhibits excellent phase stability and sinters lower than 8YSZ by nearly three times. The thermal conductivity of GYb-YSZ is much lower than that of 8YSZ, and the thermal expansion coefficient of GYb-YSZ is comparable to that of 8YSZ. The influence of Gd2O3 and Yb2O3 co-doping on phase stability, thermal conductivity and sintering of 8YSZ is discussed.展开更多
Geothermal exploration in northern Jordan is in juvenile phase. North eastern basaltic desert is expected to host, with other rock formations, a shallow geothermal field. For efficient geothermal potential evaluation,...Geothermal exploration in northern Jordan is in juvenile phase. North eastern basaltic desert is expected to host, with other rock formations, a shallow geothermal field. For efficient geothermal potential evaluation, a complete understanding of thermo-physical properties of deep reservoir rocks is of utmost importance. Due to the complex technical thermo-physical evaluations of basalts in depth, surficial basalts extending to the west were evaluated. Accordingly, six basaltic sub-flows from Al Hashimiyya were examined into their thermo-physical and mechanical properties. The flows represent the western extinction of large olivine basalt eruption. Different properties were evaluated for oven dried samples: thermal conductivity, permeability, porosity, density and specific heat capacity. In addition, basalts mechanical properties were examined: compressional wave velocity, unconfined compressive strength, indirect tensile strength and point load tests. The results were correlated in proportional patterns. They indicated that thermal conductivity of the studied basalts is dependent on porosity and permeability in parallel with mineral composition. It’s found that mechanical properties are controlled by porosity and permeability, too. The studied basalt properties exhibit slight deviation from the continental basalts thermo-physical and mechanical properties reported in the region. Thermal conductivity ranges between 1.89 and 1.32 W·m-1·K-1, whereas the porosity and permeability averages at 10.64% and 9.75899E-15 m2, respectively. Additionally, unconfined compressive strength averages at 104.9 Mpa and it’s almost 20 times higher than indirect tensile strength which ranges from 8.73 to 2.21 Mpa. As the samples were tested under laboratory conditions, in situ conditions will not be reflected by such values. At greater depth, temperature, pressure and hydrothermal activities will certainly affect rock properties. Micro fractures, whether it will be filled or not, will affect basalts properties, too. The results of this work will be used to develop a comprehensive thermo-physico-mechanical model, and improve the ability to predict rock properties at greater depths of Jordanian basalts.展开更多
The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of it...The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.展开更多
Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and th...Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and thermal properties of sintered lunar regolith are vital performance indices for the structural design of a lunar base and analysis of many critical mechanical and thermal issues.In this study,the HUST-1 lunar regolith simulant(HLRS)was sintered at 1030,1040,1050,1060,1070,and 1080℃.The effect of sintering temperature on the compressive strength was investigated,and the exact value of the optimum vacuum sintering temperature was determined between 1040 and 1060℃.Then,the microstructure and material composition of vacuum sintered HLRS at different temperatures were characterized.It was found that the sintering temperature has no significant effect on the mineral composition in the temperature range of 1030-1080℃.Besides,the heat capacity,thermal conductivity,and coefficient of thermal expansion(CTE)of vacuum sintered HLRS at different temperatures were investigated.Specific heat capacity of sintered samples increases with the increase of test temperature within the temperature range from-75 to 145℃.Besides,the thermal conductivity of the sintered sample is proportional to density.Finally,the two temperatures of 1040 and 1050℃were selected for a more detailed study of mechanical properties.The results showed that compressive strength of sintered sample is much higher than tensile strength.This study reveals the effects of sintering temperature on the physical,mechanical and thermal properties of vacuum sintered HLRS,and these material parameters will provide support for the construction of future lunar bases.展开更多
Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi...Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.展开更多
The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF mak...The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced.展开更多
Bacterial resistance and excessive inflammation are common issues that hinder wound healing.Antimicrobial peptides(AMPs)offer a promising and versatile antibacterial option compared to traditional antibiotics,with add...Bacterial resistance and excessive inflammation are common issues that hinder wound healing.Antimicrobial peptides(AMPs)offer a promising and versatile antibacterial option compared to traditional antibiotics,with additional anti-inflammatory properties.However,the applications of AMPs are limited by their antimicrobial effects and stability against bacterial degradation.TFNAs are regarded as a promising drug delivery platform that could enhance the antibacterial properties and stability of nanodrugs.Therefore,in this study,a composite hydrogel(HAMA/t-GL13K)was prepared via the photocross-linking method,in which tFNAs carry GL13K.The hydrogel was injectable,biocompatible,and could be instantly photocured.It exhibited broad-spectrum antibacterial and anti-inflammatory properties by inhibiting the expression of inflammatory factors and scavenging ROS.Thereby,the hydrogel inhibited bacterial infection,shortened the wound healing time of skin defects in infected skin full-thickness defect wound models and reduced scarring.The constructed HAMA/tFNA-AMPs hydrogels exhibit the potential for clinical use in treating microbial infections and promoting wound healing.展开更多
In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures...In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures of these final-rolled sheets are inhomogeneous,mainly including coarse deformed grains and dynamic recrystallized(DRXed)grains,and the volume fraction of these coarse deformed grains increases as the rolling temperature increases.Thus,more DRXed grains can be found in R-385℃sheet,resulting in a smaller average grain size and weaker basal texture,while the biggest grains and the highest strong basal texture are present in R-450℃sheet.Amounts of dynamic precipitation ofβphases which are mainly determined by the rolling temperature are present in these sheets,and its precipitation can consume the content of Gd solutes in the matrix.As a result,the lowest number density ofβphase in R-450℃sheet is beneficial to modify the age hardening response.Thus,the R-450℃sheet displays the best age hardening response because of a severe traditional precipitation ofβ’(more)andβH/βM(less)precipitates,resulting in a sharp improvement in strength,i.e.ultimate tensile strength(UTS)of∼518±17 MPa and yield strength(YS)of∼438±18 MPa.However,the elongation(EL)of this sheet reduces greatly,and its value is∼2.7±0.3%.By contrasting,the EL of the peak-aging R-385℃sheet keeps better,changing from∼4.9±1.2%to∼4.8±1.4%due to a novel dislocation-induced chain-like precipitate which is helpful to keep good balance between strength and ductility.展开更多
Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments an...Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments and scanning electron microscopy for surface composition analysis.This study explores the application of Machine Learning algorithms in predicting the mineralogical and mechanical properties of DHOFAR 1084,JAH 838,and NWA 11444 lunar meteorites based solely on their atomic percentage compositions.Leveraging a prior-data fitted network model,we achieved near-perfect classification scores for meteorites,mineral groups,and individual minerals.The regressor models,notably the KNeighbor model,provided an outstanding estimate of the mechanical properties—previously measured by nanoindentation tests—such as hardness,reduced Young’s modulus,and elastic recovery.Further considerations on the nature and physical properties of the minerals forming these meteorites,including porosity,crystal orientation,or shock degree,are essential for refining predictions.Our findings underscore the potential of Machine Learning in enhancing mineral identification and mechanical property estimation in lunar exploration,which pave the way for new advancements and quick assessments in extraterrestrial mineral mining,processing,and research.展开更多
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t...Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications.展开更多
Innovative pulsed current-assisted multi-pass rolling tests were conducted on a 12-roll mill during the rolling deformation processing of SUS304 ultra-thin strips.The results show that in the first rolling pass,the ro...Innovative pulsed current-assisted multi-pass rolling tests were conducted on a 12-roll mill during the rolling deformation processing of SUS304 ultra-thin strips.The results show that in the first rolling pass,the rolling reduction rate of a conventionally rolled sample(at room temperature)is 33.8%,which can be increased to 41.5%by pulsed current-assisted rolling,enabling the formation of an ultra-thin strip with a size of 67.3μm in only one rolling pass.After three passes of pulsed current-assisted rolling,the thickness of the ultra-thin strip can be further reduced to 51.7μm.To clearly compare the effects of a pulsed current on the microstructure and mechanical response of the ultra-thin strip,ultra-thin strips with nearly the same thickness reduction were analyzed.It was found that pulsed current can reduce the degree of work-hardening of the rolled samples by promoting dislocation detachment,reducing the density of stacking faults,inhibiting martensitic phase transformation,and shortening the total length of grain boundaries.As a result,the ductility of ultra-thin strips can be effectively restored to approximately 16.3%while maintaining a high tensile strength of 1118 MPa.Therefore,pulsed current-assisted rolling deformation shows great potential for the formation of ultra-thin strips with a combination of high strength and ductility.展开更多
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co...Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.展开更多
基金supported by the Postdoctoral Foundation of China (20060400261)the Special Finance Scheme of Post Doctoral Foundation of China (200801350)
文摘The effect of rare earth doping on thermo-physical properties of lanthanum zirconate was investigated. Oxide powders of various compositions La2Zr2O7 were synthesized by coprecipitation-calcination method. High-temperature dilatometer, DSC, and laser thermal diffusivity methods were used to analyze thermal expansion coefficient (TEC), specific heat, and thermal diffusivity. The results showed that CeO2 doped pyrochlores La2(Zr1.8Ce0.2)2O7 and La1.7(DyNd)0.15(Zr0.8Ce0.2)2O7 had higher TEC than La2Zr2O7 and La1.7Dy0.3Zr2O7. La2(Zr1.8Ce0.2)2O7, La1.7Dy0.3Zr2O7, and La1.7(DyNd)0.15(Zr0.8Ce0.2)2O7 had lower thermal conductivity than undoped La2Zr2O7. The Dy2O3, Nd2O3, and CeO2 codoped composition showed the lowest thermal conductivity and the highest TEC. Thermo-physical results also indicated that TEC of rare earth oxide doped La2Zr2O7 ceramic was slightly higher than that of conventional ZrO2-8Wt.% Y2O3 (8YSZ), and its thermal conductivity was lower than that of 8YSZ.
基金by the National key research and development program of China(Grant No.2017YFC0703001)National Natural Science Foundation of China(Grant No.51678297).
文摘It is well known that the use of woods as construction materials can embody carbon content of structural members,which can enhance the urban sustainability.However,due to the combustibility of wood,its current application is restricted.To broaden the application of wood,its thermal responses exposed to fire(high temperature)is investigated in this study.Firstly,the wood kinetic parameters are determined by coats-redfern method using thermal gravimetric(TGA)data.Secondly,the density and thermal conductivity are obtained from parallel and series models.Thirdly,the specific heat capacity formula is presented considering latent and decomposition heat,which can be directly determined by differential scanning calorimetry(DSC).Finally,the one-dimensional nonlinear heat transfer model with apparent thermo-physical properties is proposed.The four-sided heating experiment of Laminated Veneer Lumber(LVL)is carried out to investigate the temperature filed.The results show that the proposed model can predict the thermal responses of timber structures subjected to fire and high temperatures precisely.
文摘Al-high Si alloys were designed by the addition of Cu or Mg alloying elements to improve the mechanical properties. It is found that the addition of 1 wt.% Cu or 1 wt.% Mg as strengthening elements significantly improves the tensile strength by 27.2% and 24.5%, respectively. This phenomenon is attributed to the formation of uniformly dispersed fine particles(Al2Cu and Mg2Si secondary phases) in the Al matrix during hot press sintering of the rapidly solidified(gas atomization) powder. The thermal conductivity of the Al-50 Si alloys is reduced with the addition of Cu or Mg, by only 7.3% and 6.8%, respectively. Therefore, the strength of the Al-50 Si alloys is enhanced while maintaining their excellent thermo-physical properties by adding 1% Cu(Mg).
文摘The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little attention is being given.This work aims to valorize the waste of the trunks of banana trees to be used in construction.Firstly,the physicochemical properties of the fiber,such as the percentage of crystallization and its morphology,have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana fibers,with the purpose to promote the use of this material in construction.Secondly,the results obtained with the gypsum matrix allowed us to note a preponderant improvement in the composite’s thermal properties thanks to the variation of the banana fiber additive.Thirdly,the impact of the nature of the banana fiber distribution(either fiber mixed in matrix or fiber series model)on the flexural and compressive strengths of the composites was studied.The results obtained indicate that the insulation gain reaches up to 40%.It depends on the volume fraction and type of distribution of the banana fibers.However,the thermal inertia of the composites developed,represented by thermal diffusivity and thermal effusivity,was studied.Results indicate a gain of 40%and 25%,respectively,in terms of thermal diffusivity and thermal effusivity of the developed composites compared to plaster alone.Concerning the mechanical properties,the flexural strength depends on the percentage of the volume fraction of banana fibers used,and it can reach 20%more than the flexural strength of plaster;nevertheless,there is a significant loss in terms of the compressive strength of the studied composites.The results obtained are confirmed by the microstructure of the fiber banana.In fact,the morphology of the banana fibers was improved by the drying process.It reduces the amorphous area and improves the cellulosic crystalline surfaces,which assures good adhesion between the fiber and the matrix plaster.Finally,the dimensionless coefficient analysis was done to judge the optimal proportion of the banana fiber additive and to recommend its use even on false ceilings or walls.
基金supported financially by the National Natural Science Foundation of China(Nos.U1537212,51971013,51590894and 51425102)the National Key Research and Development Program of China(No.2016YFB0300901)。
文摘Rare earth oxides doped hafnia ceramics,with a formula of Hf0.76LnxY0.24-xO1.88(Ln=Gd,Yb,Gd+Yb or La+Yb),were prepared by solid state sintering at 1500℃.The effects of the rare earth oxides on the microstructures,sintering resistance,and thermo-physical properties of the doped hafnia ceramics were investigated.Results show that the Gd-Y,Yb-Y or Gd-Yb-Y co-doped hafnia ceramics remain the same defect fluorite(F)structure,while the La-Yb-Y co-doped hafnia revealing coexistence of pyrochlore(P)and fluorite structures.Yb-Y co-doped samples exhibited much better sintering resistance compared with Gd-Y and Gd-Yb-Y co-doped samples.The coexistence of P and F phases is beneficial to improved sintering capability.The thermal conductivities of the Gd-Y,Yb-Y and Gd-Yb-Y doped samples are relatively lower(1.4-1.7 W m^(-1)K^(-1)at 1200℃),but for the La-Yb-Y co-doped samples,the thermal conductivity increases dramatically with temperature due to increased thermal radiation at high-temperature.The average thermal expansion coefficients(TECs)of the Gd-Y,Yb-Y and Gd-Yb-Y co-doped samples are as high as10.3×10^(-6)K^(-1) in temperature range between 200-1200℃.
文摘This study was carried out to determine the thermo-physical properties of rubber seed in the moisture range of 9.1%to 14.8%(w.b.).The length,width,thickness,measured surface area,bulk density and true density increased with increasing moisture content with high coefficients of determination(significant at p<0.05).Their optimum values at 14.8%moisture content were 17.00 mm,11.94 mm,8.26 mm,285.20 mm^(2),295.00 kg/m^(3) and 470.67 kg/m^(3),respectively.The angle of repose increased as moisture content increased with low coefficient of determination and has optimum value of 28.81°at 14.8%moisture content.The specific heat capacity and thermal conductivity decreased linearly while thermal diffusivity increased exponentially with an increase in moisture content(significant at p<0.05).The optimum values of specific heat capacity,thermal conductivity and diffusivity at 14.8%moisture content were 55.84 kJ/(kg.K),0.032 W/(m.K)and 1.93×10^(-9) m^(2)/s,respectively.The results are essential in the design of storage structure for rubber seed.
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
基金supported by the National Natural Science Foundation of China (No. 51075197)
文摘Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) with optimum band gaps about 1.5 eV are important absorbers for solar cells. The elastic constants and the thermo-physical properties of the stannite-type CZTS and CZTSe are calculated by using density-functional theory (DFT) and the quasi-harmonic Debye model. The bonding strength along the [100] and [010] directions is the same to that along the [001] direction and the shear elastic properties of the {001} plane are anisotropic for CZTS and CZTSe. Both compounds exhibit ductile behavior due to their high ratio of bulk modulus to shear modulus (K/G). The values of thermal capacity are close to 200 J/(mol·K) at above 300 K, and the thermal expansion coefficients decrease with increasing pressure at same temperature. The entropy is variable by power-exponent, and the internal energy is almost linear with increasing temperature for CZTS and CZTSe. The Gibbs energy of CZTS is lower than that of CZTSe under same temperature and pressure. The Debye temperatures are 297 and 232 K, and Grneisen parameters are 2.36 and 2.37 for CZTS and CZTSe at 300 K, respectively.
基金National Natural Science Foundation of China (50771009, 50731001)National Basic Research Program of China (2010CB631200)Research Fund for the Doctoral Program of Higher Education of China (20070006017)
文摘The role of multicomponent rare earth oxides in phase stability, thermophysical properties and sintering for ZrO2-based thermal barrier coatings (TBCs) materials is investigated. 8YSZ codoped with 3 mol% Gd2O3 and 3 mol% Yb2O3 (GYb-YSZ) powders are synthesized by solid state reaction for 24 h at various temperatures. As temperature increases, stabilizers are dissolved into zirconia matrix gradually. Synthesized at 1 500 °C, GYb-YSZ is basically composed of cubic phase. GYb-YSZ exhibits excellent phase stability and sinters lower than 8YSZ by nearly three times. The thermal conductivity of GYb-YSZ is much lower than that of 8YSZ, and the thermal expansion coefficient of GYb-YSZ is comparable to that of 8YSZ. The influence of Gd2O3 and Yb2O3 co-doping on phase stability, thermal conductivity and sintering of 8YSZ is discussed.
文摘Geothermal exploration in northern Jordan is in juvenile phase. North eastern basaltic desert is expected to host, with other rock formations, a shallow geothermal field. For efficient geothermal potential evaluation, a complete understanding of thermo-physical properties of deep reservoir rocks is of utmost importance. Due to the complex technical thermo-physical evaluations of basalts in depth, surficial basalts extending to the west were evaluated. Accordingly, six basaltic sub-flows from Al Hashimiyya were examined into their thermo-physical and mechanical properties. The flows represent the western extinction of large olivine basalt eruption. Different properties were evaluated for oven dried samples: thermal conductivity, permeability, porosity, density and specific heat capacity. In addition, basalts mechanical properties were examined: compressional wave velocity, unconfined compressive strength, indirect tensile strength and point load tests. The results were correlated in proportional patterns. They indicated that thermal conductivity of the studied basalts is dependent on porosity and permeability in parallel with mineral composition. It’s found that mechanical properties are controlled by porosity and permeability, too. The studied basalt properties exhibit slight deviation from the continental basalts thermo-physical and mechanical properties reported in the region. Thermal conductivity ranges between 1.89 and 1.32 W·m-1·K-1, whereas the porosity and permeability averages at 10.64% and 9.75899E-15 m2, respectively. Additionally, unconfined compressive strength averages at 104.9 Mpa and it’s almost 20 times higher than indirect tensile strength which ranges from 8.73 to 2.21 Mpa. As the samples were tested under laboratory conditions, in situ conditions will not be reflected by such values. At greater depth, temperature, pressure and hydrothermal activities will certainly affect rock properties. Micro fractures, whether it will be filled or not, will affect basalts properties, too. The results of this work will be used to develop a comprehensive thermo-physico-mechanical model, and improve the ability to predict rock properties at greater depths of Jordanian basalts.
基金supported by the National Key Research and Development Program of China(2023YFB3711300 and 2021YFF0500300)the Strategic Research and Consulting Project of the Chinese Academy of Engineering(2023-XZ-90 and 2023-JB-09-10)the National Key Research and Development Program of China(2021YFF0500300).
文摘The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.
基金supported by the National Key Research and Development Program of China(Nos.2021YFF0500300 and 2023YFB3711300)the Strategic Research and Consulting Project of the Chinese Academy of Engineering(Nos.2023-XZ-90 and 2023-JB-09-10).
文摘Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and thermal properties of sintered lunar regolith are vital performance indices for the structural design of a lunar base and analysis of many critical mechanical and thermal issues.In this study,the HUST-1 lunar regolith simulant(HLRS)was sintered at 1030,1040,1050,1060,1070,and 1080℃.The effect of sintering temperature on the compressive strength was investigated,and the exact value of the optimum vacuum sintering temperature was determined between 1040 and 1060℃.Then,the microstructure and material composition of vacuum sintered HLRS at different temperatures were characterized.It was found that the sintering temperature has no significant effect on the mineral composition in the temperature range of 1030-1080℃.Besides,the heat capacity,thermal conductivity,and coefficient of thermal expansion(CTE)of vacuum sintered HLRS at different temperatures were investigated.Specific heat capacity of sintered samples increases with the increase of test temperature within the temperature range from-75 to 145℃.Besides,the thermal conductivity of the sintered sample is proportional to density.Finally,the two temperatures of 1040 and 1050℃were selected for a more detailed study of mechanical properties.The results showed that compressive strength of sintered sample is much higher than tensile strength.This study reveals the effects of sintering temperature on the physical,mechanical and thermal properties of vacuum sintered HLRS,and these material parameters will provide support for the construction of future lunar bases.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701202,No.2017YFB0701500 and No.2020YFB1505901)National Natural Science Foundation of China(General Program No.51474149,52072240)+3 种基金Shanghai Science and Technology Committee(No.18511109300)Science and Technology Commission of the CMC(2019JCJQZD27300)financial support from the University of Michigan and Shanghai Jiao Tong University joint funding,China(AE604401)Science and Technology Commission of Shanghai Municipality(No.18511109302).
文摘Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.
基金financial supports provided by the China Scholarship Council(Nos.202206 290061 and 202206290062)。
文摘The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced.
基金supported by National Key R&D Program of China(2019YFA0110600)National Natural Science Foundation of China(82370929,81970916)+2 种基金Sichuan Science and Technology Program(2022NSFSC0002)Sichuan Province Youth Science and Technology Innovation Team(2022JDTD0021)Research and Develop Program,West China Hospital of Stomatology Sichuan University(RD03202302)。
文摘Bacterial resistance and excessive inflammation are common issues that hinder wound healing.Antimicrobial peptides(AMPs)offer a promising and versatile antibacterial option compared to traditional antibiotics,with additional anti-inflammatory properties.However,the applications of AMPs are limited by their antimicrobial effects and stability against bacterial degradation.TFNAs are regarded as a promising drug delivery platform that could enhance the antibacterial properties and stability of nanodrugs.Therefore,in this study,a composite hydrogel(HAMA/t-GL13K)was prepared via the photocross-linking method,in which tFNAs carry GL13K.The hydrogel was injectable,biocompatible,and could be instantly photocured.It exhibited broad-spectrum antibacterial and anti-inflammatory properties by inhibiting the expression of inflammatory factors and scavenging ROS.Thereby,the hydrogel inhibited bacterial infection,shortened the wound healing time of skin defects in infected skin full-thickness defect wound models and reduced scarring.The constructed HAMA/tFNA-AMPs hydrogels exhibit the potential for clinical use in treating microbial infections and promoting wound healing.
基金financially supported by National Key R&D Program of China(No.2021YFB3701100)Beijing Municipal Natural Science Foundation(No.2202004).
文摘In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures of these final-rolled sheets are inhomogeneous,mainly including coarse deformed grains and dynamic recrystallized(DRXed)grains,and the volume fraction of these coarse deformed grains increases as the rolling temperature increases.Thus,more DRXed grains can be found in R-385℃sheet,resulting in a smaller average grain size and weaker basal texture,while the biggest grains and the highest strong basal texture are present in R-450℃sheet.Amounts of dynamic precipitation ofβphases which are mainly determined by the rolling temperature are present in these sheets,and its precipitation can consume the content of Gd solutes in the matrix.As a result,the lowest number density ofβphase in R-450℃sheet is beneficial to modify the age hardening response.Thus,the R-450℃sheet displays the best age hardening response because of a severe traditional precipitation ofβ’(more)andβH/βM(less)precipitates,resulting in a sharp improvement in strength,i.e.ultimate tensile strength(UTS)of∼518±17 MPa and yield strength(YS)of∼438±18 MPa.However,the elongation(EL)of this sheet reduces greatly,and its value is∼2.7±0.3%.By contrasting,the EL of the peak-aging R-385℃sheet keeps better,changing from∼4.9±1.2%to∼4.8±1.4%due to a novel dislocation-induced chain-like precipitate which is helpful to keep good balance between strength and ductility.
基金EP-A and JMT-R acknowledges financial support from the project PID2021-128062NB-I00 funded by MCIN/AEI/10.13039/501100011033The lunar samples studied here were acquired in the framework of grant PGC2018-097374-B-I00(P.I.JMT-R)+3 种基金This project has received funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(No.865657)for the project“Quantum Chemistry on Interstellar Grains”(QUANTUMGRAIN),AR acknowledges financial support from the FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación(No.PID2021-126427NB-I00)Partial financial support from the Spanish Government(No.PID2020-116844RB-C21)the Generalitat de Catalunya(No.2021-SGR-00651)is acknowledgedThis work was supported by the LUMIO project funded by the Agenzia Spaziale Italiana(No.2024-6-HH.0).
文摘Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments and scanning electron microscopy for surface composition analysis.This study explores the application of Machine Learning algorithms in predicting the mineralogical and mechanical properties of DHOFAR 1084,JAH 838,and NWA 11444 lunar meteorites based solely on their atomic percentage compositions.Leveraging a prior-data fitted network model,we achieved near-perfect classification scores for meteorites,mineral groups,and individual minerals.The regressor models,notably the KNeighbor model,provided an outstanding estimate of the mechanical properties—previously measured by nanoindentation tests—such as hardness,reduced Young’s modulus,and elastic recovery.Further considerations on the nature and physical properties of the minerals forming these meteorites,including porosity,crystal orientation,or shock degree,are essential for refining predictions.Our findings underscore the potential of Machine Learning in enhancing mineral identification and mechanical property estimation in lunar exploration,which pave the way for new advancements and quick assessments in extraterrestrial mineral mining,processing,and research.
基金financially supported by the Key Scientific Research Project in Shanxi Province,China(No.202102050201003)the National Natural Science Foundation of China(No.52071227)+2 种基金the Natural Science Foundation of Shanxi Province,China(No.202103021223293)the Central Guiding Science and Technology Development of Local Fund,China(No.YDZJSK20231A046)the Postgraduate Education Innovation Project of Shanxi Province,China(No.2023Y686)。
文摘Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications.
基金This work was supported by the fund of the National Natural Science Foundation of China(51974196)Major Program of National Natural Science Foundation of China(U22A20188)+1 种基金Science and Technology Innovation Teams of Shanxi Province(202304051001025)Central Government Guides the Special Fund Projects of Local Scientific and Technological Development(YDZX20191400002149).
文摘Innovative pulsed current-assisted multi-pass rolling tests were conducted on a 12-roll mill during the rolling deformation processing of SUS304 ultra-thin strips.The results show that in the first rolling pass,the rolling reduction rate of a conventionally rolled sample(at room temperature)is 33.8%,which can be increased to 41.5%by pulsed current-assisted rolling,enabling the formation of an ultra-thin strip with a size of 67.3μm in only one rolling pass.After three passes of pulsed current-assisted rolling,the thickness of the ultra-thin strip can be further reduced to 51.7μm.To clearly compare the effects of a pulsed current on the microstructure and mechanical response of the ultra-thin strip,ultra-thin strips with nearly the same thickness reduction were analyzed.It was found that pulsed current can reduce the degree of work-hardening of the rolled samples by promoting dislocation detachment,reducing the density of stacking faults,inhibiting martensitic phase transformation,and shortening the total length of grain boundaries.As a result,the ductility of ultra-thin strips can be effectively restored to approximately 16.3%while maintaining a high tensile strength of 1118 MPa.Therefore,pulsed current-assisted rolling deformation shows great potential for the formation of ultra-thin strips with a combination of high strength and ductility.
文摘Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.