To investigate the thermo-rheological structure and passive continental margin rifting in the Qiongdongnan Basin(QDNB),thermo-rheological models of two profiles across the western and eastern QDNB are presented.The co...To investigate the thermo-rheological structure and passive continental margin rifting in the Qiongdongnan Basin(QDNB),thermo-rheological models of two profiles across the western and eastern QDNB are presented.The continental shelf of western QDNB,having the lowest crustal extension factor,is recognized as the initial non-uniform extension crust model.This regime is referred to as the jelly sandwich-1(JS-1)regime,having a lower crustal ductile layer.The oceanward part of the western QDNB changes from the relatively strong JS-1 to the weak crème brûlée-1(CB-1)regime with a significantly thinned lower crust.However,the crustal extension in the eastern QDNB is significantly higher than that in the western QDNB,with conjugate faults extending deep into the lower crust.The central depression zone of the eastern QDNB is defined as the much stronger JS-2 regime,having a brittle deformation across the entire crust and upper mantle and characteristics of a cold and rigid oceanic crust.Unlike the widespread lower crustal high-velocity layers(HVLs)in the northern margin of the South China Sea,the HVLs are confined to the lower crustal base of the central depression zone of the QDNB.The HVLs of QDNB are the results of non-uniform extension with mantle underplating during the lower crustal-necking stage,which is facilitated by the lower crustal ductile layer and derived by mantle lat-eral flowing.The gigantic mantle low-velocity zone related to the Red River Fault should be a necessary factor for the east-west differential margin rifting process of QDNB,which may drive the lateral flowing in the mantle.展开更多
An ever-growing demand for depleted natural resources is one of the significant challenges facing the global asphalt pavement industry in building and maintaining global asphalt pavements.Because plastics are ubiquito...An ever-growing demand for depleted natural resources is one of the significant challenges facing the global asphalt pavement industry in building and maintaining global asphalt pavements.Because plastics are ubiquitous in the global economy,they are the latest in a series of high-profile materials to attract attention.Their low material recovery rates and the environmental impact of current disposal methods pose a threat to plastic recycling.Recycling plastic wastes in asphalt pavement is a possible approach to reducing environmental pressure and the demand for depleted natural resources.Many studies have proposed recycling plastic waste in asphalt pavement using dry-and wet-processed technologies.This review aims to comprehensively evaluate the feasibility of various recycled plastics in asphalt pavement concerning the properties of compatibility,storage stability,microstructure,thermo-rheology,and mechanical performance and to identify hallenges and recommendations for the future.This review discusses recent developments and the feasibility of using plastic wastes as modifiers or additives to asphalt binders or asphalt mixtures in dry and wet processes,focusing on different materials from waste streams,how to produce such modified materials,and the characteristics of plastic waste modified asphalt,thus contributing to the sustainable management of resources and production of useful paving materials.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41530963,41176038 and 91858215).
文摘To investigate the thermo-rheological structure and passive continental margin rifting in the Qiongdongnan Basin(QDNB),thermo-rheological models of two profiles across the western and eastern QDNB are presented.The continental shelf of western QDNB,having the lowest crustal extension factor,is recognized as the initial non-uniform extension crust model.This regime is referred to as the jelly sandwich-1(JS-1)regime,having a lower crustal ductile layer.The oceanward part of the western QDNB changes from the relatively strong JS-1 to the weak crème brûlée-1(CB-1)regime with a significantly thinned lower crust.However,the crustal extension in the eastern QDNB is significantly higher than that in the western QDNB,with conjugate faults extending deep into the lower crust.The central depression zone of the eastern QDNB is defined as the much stronger JS-2 regime,having a brittle deformation across the entire crust and upper mantle and characteristics of a cold and rigid oceanic crust.Unlike the widespread lower crustal high-velocity layers(HVLs)in the northern margin of the South China Sea,the HVLs are confined to the lower crustal base of the central depression zone of the QDNB.The HVLs of QDNB are the results of non-uniform extension with mantle underplating during the lower crustal-necking stage,which is facilitated by the lower crustal ductile layer and derived by mantle lat-eral flowing.The gigantic mantle low-velocity zone related to the Red River Fault should be a necessary factor for the east-west differential margin rifting process of QDNB,which may drive the lateral flowing in the mantle.
基金financial support from the State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology,SYSJJ2022-07)the Fundamental Research Funds for the Central Universities(2020kfyXJJS127)。
文摘An ever-growing demand for depleted natural resources is one of the significant challenges facing the global asphalt pavement industry in building and maintaining global asphalt pavements.Because plastics are ubiquitous in the global economy,they are the latest in a series of high-profile materials to attract attention.Their low material recovery rates and the environmental impact of current disposal methods pose a threat to plastic recycling.Recycling plastic wastes in asphalt pavement is a possible approach to reducing environmental pressure and the demand for depleted natural resources.Many studies have proposed recycling plastic waste in asphalt pavement using dry-and wet-processed technologies.This review aims to comprehensively evaluate the feasibility of various recycled plastics in asphalt pavement concerning the properties of compatibility,storage stability,microstructure,thermo-rheology,and mechanical performance and to identify hallenges and recommendations for the future.This review discusses recent developments and the feasibility of using plastic wastes as modifiers or additives to asphalt binders or asphalt mixtures in dry and wet processes,focusing on different materials from waste streams,how to produce such modified materials,and the characteristics of plastic waste modified asphalt,thus contributing to the sustainable management of resources and production of useful paving materials.