期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Composition optimization and performance prediction for ultra-stable water-based aerosol based on thermodynamic entropy theory
1
作者 Tingting Kang Canjun Yan +6 位作者 Xinying Zhao Jingru Zhao Zixin Liu Chenggong Ju Xinyue Zhang Yun Zhang Yan Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期437-446,共10页
Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th... Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security. 展开更多
关键词 Ultra-stable Water-based aerosol thermodynamic entropy Composition optimization Performance prediction
下载PDF
Entropy Increase and Nature of Separation
2
作者 梁恒 王正刚 +1 位作者 傅若农 林炳承 《Journal of Beijing Institute of Technology》 EI CAS 1996年第2期143+137-143,共7页
The entropy increase (EI) and the entropy increase per unit time (EIPUT) of the solute zone are chosen as new criteria of separation efficiency in chromatography and electrophoresis. It is verified by grand canonical ... The entropy increase (EI) and the entropy increase per unit time (EIPUT) of the solute zone are chosen as new criteria of separation efficiency in chromatography and electrophoresis. It is verified by grand canonical ensemble (GCE) that the kinetic energy distribution of the solute is a common characteristic of the entropy and the distribution of solute zones.Under the assumptions. EI of the solute system is directly proportional to the logarithm of the difference between one and one half of the substantial separation ratio. the ratio of moles of a sparated solute to its total moles. and EIPUT is direchy proportional to corrected separation rate of separation system. EI or EIPUT is a important bridge between separation efficiency of chromatography or electrophoresis and operating parameters, especially. when nonequilibriumthermodynamics(NET) would be adopted. 展开更多
关键词 capillary electrophoresis chromatography separation entropy increase and separation thermodynamics
下载PDF
Droplets diameter distribution using maximum entropy formulation combined with a new energy-based sub-model 被引量:2
3
作者 Seyed Mostafa Hosseinalipour Hadiseh Karimaei Ehsan Movahednejad 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第11期1625-1630,共6页
The maximum entropy principle(MEP) is one of the first methods which have been used to predict droplet size and velocity distributions of liquid sprays. This method needs a mean droplets diameter as an input to predic... The maximum entropy principle(MEP) is one of the first methods which have been used to predict droplet size and velocity distributions of liquid sprays. This method needs a mean droplets diameter as an input to predict the droplet size distribution. This paper presents a new sub-model based on the deterministic aspects of liquid atomization process independent of the experimental data to provide the mean droplets diameter for using in the maximum entropy formulation(MEF). For this purpose, a theoretical model based on the approach of energy conservation law entitled energy-based model(EBM) is presented. Based on this approach, atomization occurs due to the kinetic energy loss. Prediction of the combined model(MEF/EBM) is in good agreement with the available experimental data. The energy-based model can be used as a fast and reliable enough model to obtain a good estimation of the mean droplets diameter of a spray and the combined model(MEF/EBM) can be used to well predict the droplet size distribution at the primary breakup. 展开更多
关键词 Mean droplets diameter Energy conservation Maximum entropy formulation (MEF) Size distribution Statistical thermodynamics Mathematical modeling
下载PDF
On Clausius’, Post-Clausius’, and Negentropic Thermodynamics
4
作者 José C. Íñiguez 《Journal of High Energy Physics, Gravitation and Cosmology》 2021年第4期1425-1458,共34页
The evidence here provided shows that the thermodynamics of the second law, as currently understood, originated in a correction of the flaws affecting Clausius original work on this matter. The body of knowledge emerg... The evidence here provided shows that the thermodynamics of the second law, as currently understood, originated in a correction of the flaws affecting Clausius original work on this matter. The body of knowledge emerging from this correction has been here called post-Clausius’ thermodynamics. The said corrections, carried on with the intended goal of preserving the validity of Clausius’ main result, namely the law of increasing entropy, made use of a number of counterintuitive or logically at fault notions. A joint revision of Clausius’ and post-Clausius’ work on the second law, carried on retaining some of Clausius original notions, and disregarding others introduced by post-Clausius thermodynamics, led this author to results in direct contradiction to the law of increasing entropy. Among the key results coming out of this work we find the one stating that the total-entropy change for spontaneous thermodynamic processes is the result of the summation of the opposite-sign contributions coming from the entropic (energy degrading) and negentropic (energy upgrading) changes subsumed by any such process. These results also show, via the total-entropy change for a non-reversible heat engine, that negentropic thermodynamics subsumes post-Clausius thermodynamics as a special case. 展开更多
关键词 Clausius’ entropy Law in Contradiction with Its Premises Post-Clausius’ thermodynamics Emerges from the Biased Correction of the Flaws in Clausius entropy Law Negentropic thermodynamics and the Transformation of Heat into Work as a Negentropic Process
下载PDF
Biological Stress as a Principle of Nature: A Review of Literature
5
作者 Celia Martins Cortez Dilson Silva 《Open Journal of Biophysics》 2020年第3期150-173,共24页
This review paper attempts to approximate the concept of biological stress to the stress concept in Physics using the phenomenological view of physics to discuss the source of generator forces of biological stress sta... This review paper attempts to approximate the concept of biological stress to the stress concept in Physics using the phenomenological view of physics to discuss the source of generator forces of biological stress state. Based on the literature, parallels are drawn between the two concepts and a discussion on the steady state in open systems and homeostatic state in biological systems is developed. Using the concepts of thermodynamic entropy and informational entropy, and comparing stress in living systems and nonliving, we attempt to build a basis for a view of stress as a principle of nature linked to the adaptability property of matter, opposing entropy. It is known that the increasing number of microstates possible in a complex system increases the entropy. In that way, entropy is related to the amount of additional information needed to specify the exact physical state of a system, given its macroscopic specification. By controlling the metabolic processes (catabolism-anabolism) to decrease the entropy, stress reduces the number of possible states for which the living system could evolve, avoiding the loss of “life information”, preserving its characteristics and preventing its extinction. The loss of function of a species within an ecosystem or of cells within an organ can be showing that the limits of the stress principle were “transgressed”. That is, the intensity and/or duration of stress exceeded the capacity of living organism to process of information extracted from stressor and reprogram its physiological mechanisms, activating its adaptability process, while its internal balance is preserved. 展开更多
关键词 Stress Concept Biological Stress thermodynamic entropy Information entropy State of Stress
下载PDF
A Novel MDFA-MKECA Method With Application to Industrial Batch Process Monitoring 被引量:4
6
作者 Yinghua Yang Xiang Shi +1 位作者 Xiaozhi Liu Hongru Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1446-1454,共9页
For the complex batch process with characteristics of unequal batch data length,a novel data-driven batch process monitoring method is proposed based on mixed data features analysis and multi-way kernel entropy compon... For the complex batch process with characteristics of unequal batch data length,a novel data-driven batch process monitoring method is proposed based on mixed data features analysis and multi-way kernel entropy component analysis(MDFA-MKECA)in this paper.Combining the mechanistic knowledge,different mixed data features of each batch including statistical and thermodynamics entropy features,are extracted to finish data pre-processing.After that,MKECA is applied to reduce data dimensionality and finally establish a monitoring model.The proposed method is applied to a reheating furnace industry process,and the experimental results demonstrate that the MDFA-MKECA method can reduce the calculated amount and effectively provide on-line monitoring of the batch process. 展开更多
关键词 MDFA MKECA process monitoring reheating furnace statistical features thermodynamics entropy feature
下载PDF
Optimization of combined endoreversible Carnot heat engines with different objectives 被引量:4
7
作者 程雪涛 梁新刚 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期239-244,共6页
Taking the output power, thermal efficiency, and thermo-economic performance as the optimization objectives, we optimize the operation parameters of a thermodynamic system with combined endoreversible Carnot heat engi... Taking the output power, thermal efficiency, and thermo-economic performance as the optimization objectives, we optimize the operation parameters of a thermodynamic system with combined endoreversible Carnot heat engines in this paper. The applicabilities of the entropy generation minimization and entransy theory to the optimizations are discussed. For the discussed cases, only the entransy loss coefficient is always agreeable to the optimization of thermal efficiency. The applicabilities of the other discussed concepts to the optimizations are conditional. Different concepts and principles are needed for different optimization objectives, and the optimization principles have their application preconditions. When the preconditions are not satisfied, the principles may be not applicable. 展开更多
关键词 combined endoreversible Carnot heat engines entransy theory entropy generation minimization finite time thermodynamics
下载PDF
The uniqueness of the integration factor associated with the exchanged heat in thermodynamics 被引量:2
8
作者 Yu-Han Ma Hui Dong +1 位作者 Hai-Tao Quan Chang-Pu Sun 《Fundamental Research》 CAS 2021年第1期6-9,共4页
State functions play important roles in thermodynamics.Different from the process function,such as the exchanged heatδQ and the applied workδW,the change of the state function can be expressed as an exact differenti... State functions play important roles in thermodynamics.Different from the process function,such as the exchanged heatδQ and the applied workδW,the change of the state function can be expressed as an exact differential.We prove here that,for a generic thermodynamic system,only the inverse of the temperature,namely 1/T,can serve as the integration factor for the exchanged heatδQ.The uniqueness of the integration factor invalidates any attempt to define other state functions associated with the exchanged heat,and in turn,reveals the incorrectness of defining the entransy E_(vh)=CVT^(2)/2 as a state function by treating T as an integration factor.We further show the errors in the derivation of entransy by treating the heat capacity C_(V)as a temperature-independent constant. 展开更多
关键词 Integration factor Process function Exchanged heat thermodynamic entropy Uniqueness theorem
原文传递
On thermodynamic self-consistency of generic axiomatic-nonextensive statistics
9
作者 Abdel Nasser Tawfik Hayam Yassin Eman R.Abo Elyazeed 《Chinese Physics C》 SCIE CAS CSCD 2017年第5期73-90,共18页
Generic axiomatic-nonextensive statistics introduces two asymptotic properties,to each of which a scaling function is assigned.The first and second scaling properties are characterized by the exponents c and d,respect... Generic axiomatic-nonextensive statistics introduces two asymptotic properties,to each of which a scaling function is assigned.The first and second scaling properties are characterized by the exponents c and d,respectively.In the thermodynamic limit,a grand-canonical ensemble can be formulated.The thermodynamic properties of a relativistic ideal gas of hadron resonances are studied,analytically.It is found that this generic statistics satisfies the requirements of the equilibrium thermodynamics.Essential aspects of the thermodynamic self-consistency are clarified.Analytical expressions are proposed for the statistical fits of various transverse momentum distributions measured in most-central collisions at different collision energies and colliding systems.Estimations for the freezeout temperature(T_(ch)) and the baryon chemical potential(μ_b) and the exponents c and d are determined.The earlier are found compatible with the parameters deduced from Boltzmann-Gibbs(BG) statistics(extensive),while the latter refer to generic nonextensivities.The resulting equivalence class(c,d) is associated with stretched exponentials,where Lambert function reaches its asymptotic stability.In some measurements,the resulting nonextensive entropy is linearly composed on extensive entropies.Apart from power-scaling,the particle ratios and yields are excellent quantities to highlighting whether the particle production takes place(non)extensively.Various particle ratios and yields measured by the STAR experiment in central collisions at 200,62.4 and 7.7 GeV are fitted with this novel approach.We found that both c and d 〈 1,i.e.referring to neither BG-nor Tsallis-type statistics,but to(c,d)-entropy,where Lambert functions exponentially rise.The freezeout temperature and baryon chemical potential are found comparable with the ones deduced from BG statistics(extensive).We conclude that the particle production at STAR energies is likely a nonextensive process but not necessarily BG or Tsallis type. 展开更多
关键词 thermodynamic consistency asymptotic relativistic momentum quantities exponentially collision entropy generic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部