A new micromechanics constitutive model for pure dilatant transformation plasticity of structure ceramics is proposed in this paper.Based on the thermodynamics,micromechanics and microscale t→ m trans- formation mech...A new micromechanics constitutive model for pure dilatant transformation plasticity of structure ceramics is proposed in this paper.Based on the thermodynamics,micromechanics and microscale t→ m trans- formation mechanism analysis of the TZP and PSZ ZrO2-containing ceramics,an analytic expressions of the Helmholtz and complementary free energy of the constitutive element for the case of pure dilatant transforma- tion is derived for the first time in a self-consistent manner.By the analysis of energy dissipation in the for- ward and reverse transformations,the mieromechanics constitutive law is derived in the framework of Hill-Rice’s internal variable constitutive theory.展开更多
To add to the growing mature research on the tropical 30-50 day oscillations from a new prospective, the current work bases on dynamic analysis of baroclinic quasi-geostrophic models to discuss dynamic mechanisms for ...To add to the growing mature research on the tropical 30-50 day oscillations from a new prospective, the current work bases on dynamic analysis of baroclinic quasi-geostrophic models to discuss dynamic mechanisms for the generation and propagation of CISK-Rossby waves, and to understand restraints and effects of different wave structures and thermodynamic forcing on the 30-50 day oscillations in the tropical atmosphere. Some important properties of the oscillation propagation have been explained and, in detail, with respect to its meridional propagation and vertical "baroclinic" structure. The work has come up with some new opinions and viewpoints. New opinions about the propagation and energy dispersion are to be proved by more observations and study.展开更多
Direct alloying is difficult to be realized in an immiscible Mo-Ag system with a positive formation heat due to the absence of thermodynamic driving force at equilibrium.In this work,a direct alloying method is develo...Direct alloying is difficult to be realized in an immiscible Mo-Ag system with a positive formation heat due to the absence of thermodynamic driving force at equilibrium.In this work,a direct alloying method is developed to realize the direct alloying between Mo and Ag and construct Mo-Ag interface.The direct alloying method was mainly carried out through a direct diffusion bonding for Mo and Ag rods at a temperature close to the melting point of Ag(Tm Ag).Then the microstructure and phase constitution of the as-constructed Mo-Ag interface are characterized.The results show that Mo-Ag metallurgical bonding interface has been constructed successfully,indicating that a direct alloying in the immiscible Mo-Ag system has been realized.Additionally,mechanical tests are carried out for the Mo-Ag joints prepared through the direct alloying method.The test results show that the average maximum tensile strength of the joints is about 107 MPa.The effect of alloying parameters on the tensile strength is also discussed,which shows that there is an effective temperature range for the direct alloying between Mo and Ag.Lastly,an improved thermodynamic model that considers the formation of Mo-Ag crystalline and amorphous phase is presented to reveal the thermodynamic mechanism of the direct alloying.Combining the calculation and differential scanning calorimetry(DSC)tests results,the Gibbs energy diagram for the direct alloying is obtained.It is confirmed that the co-release of storage energy and surface energy can serve as the thermodynamic driving force to overcome the effect of positive formation heat and lead to direct alloying for Mo-Ag systems.展开更多
Metabolic network models have become increasingly precise and accurate as the most widespread and practical digital representations of living cells.The prediction functions were significantly expanded by integrating c...Metabolic network models have become increasingly precise and accurate as the most widespread and practical digital representations of living cells.The prediction functions were significantly expanded by integrating cellular resources and abiotic constraints in recent years.However,if unreasonable modeling methods were adopted due to a lack of consideration of biological knowledge,the conflicts between stoichiometric and other constraints,such as thermodynamic feasibility and enzyme resource availability,would lead to distorted predictions.In this work,we investigated a prediction anomaly of EcoETM,a constraints-based metabolic network model,and introduced the idea of enzyme compartmentalization into the analysis process.Through rational combination of reactions,we avoid the false prediction of pathway feasibility caused by the unrealistic assumption of free intermediate metabolites.This allowed us to correct the pathway structures of L-serine and L-tryptophan.A specific analysis explains the application method of the EcoETM-like model and demonstrates its potential and value in correcting the prediction results in pathway structure by resolving the conflict between different constraints and incorporating the evolved roles of enzymes as reaction compartments.Notably,this work also reveals the trade-off between product yield and thermodynamic feasibility.Our work is of great value for the structural improvement of constraints-based models.展开更多
基金The project is supported by the National Natural Science Foundation of Chin
文摘A new micromechanics constitutive model for pure dilatant transformation plasticity of structure ceramics is proposed in this paper.Based on the thermodynamics,micromechanics and microscale t→ m trans- formation mechanism analysis of the TZP and PSZ ZrO2-containing ceramics,an analytic expressions of the Helmholtz and complementary free energy of the constitutive element for the case of pure dilatant transforma- tion is derived for the first time in a self-consistent manner.By the analysis of energy dissipation in the for- ward and reverse transformations,the mieromechanics constitutive law is derived in the framework of Hill-Rice’s internal variable constitutive theory.
基金Natural Science Foundation of China (49975012) Key Teacher Foundation of Education Ministry
文摘To add to the growing mature research on the tropical 30-50 day oscillations from a new prospective, the current work bases on dynamic analysis of baroclinic quasi-geostrophic models to discuss dynamic mechanisms for the generation and propagation of CISK-Rossby waves, and to understand restraints and effects of different wave structures and thermodynamic forcing on the 30-50 day oscillations in the tropical atmosphere. Some important properties of the oscillation propagation have been explained and, in detail, with respect to its meridional propagation and vertical "baroclinic" structure. The work has come up with some new opinions and viewpoints. New opinions about the propagation and energy dispersion are to be proved by more observations and study.
基金supported by the National Key Research and Development Program of China(Grant Nos.2018YFB0703904 and 2017YFE0302600)the National Natural Science Foundation of China(Grant No.51471114)。
文摘Direct alloying is difficult to be realized in an immiscible Mo-Ag system with a positive formation heat due to the absence of thermodynamic driving force at equilibrium.In this work,a direct alloying method is developed to realize the direct alloying between Mo and Ag and construct Mo-Ag interface.The direct alloying method was mainly carried out through a direct diffusion bonding for Mo and Ag rods at a temperature close to the melting point of Ag(Tm Ag).Then the microstructure and phase constitution of the as-constructed Mo-Ag interface are characterized.The results show that Mo-Ag metallurgical bonding interface has been constructed successfully,indicating that a direct alloying in the immiscible Mo-Ag system has been realized.Additionally,mechanical tests are carried out for the Mo-Ag joints prepared through the direct alloying method.The test results show that the average maximum tensile strength of the joints is about 107 MPa.The effect of alloying parameters on the tensile strength is also discussed,which shows that there is an effective temperature range for the direct alloying between Mo and Ag.Lastly,an improved thermodynamic model that considers the formation of Mo-Ag crystalline and amorphous phase is presented to reveal the thermodynamic mechanism of the direct alloying.Combining the calculation and differential scanning calorimetry(DSC)tests results,the Gibbs energy diagram for the direct alloying is obtained.It is confirmed that the co-release of storage energy and surface energy can serve as the thermodynamic driving force to overcome the effect of positive formation heat and lead to direct alloying for Mo-Ag systems.
基金funded by the National Key Research and Development Program of China(2018YFA0900300,2020YFA0908301)the National Natural Science Foundation of China(32201188)+1 种基金the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(TSBICIP-CXRC-060,TSBICIP-PTJS-001,and TSBICIP-PTJS-013)the China Postdoctoral Science Foundation(2022M723341).
文摘Metabolic network models have become increasingly precise and accurate as the most widespread and practical digital representations of living cells.The prediction functions were significantly expanded by integrating cellular resources and abiotic constraints in recent years.However,if unreasonable modeling methods were adopted due to a lack of consideration of biological knowledge,the conflicts between stoichiometric and other constraints,such as thermodynamic feasibility and enzyme resource availability,would lead to distorted predictions.In this work,we investigated a prediction anomaly of EcoETM,a constraints-based metabolic network model,and introduced the idea of enzyme compartmentalization into the analysis process.Through rational combination of reactions,we avoid the false prediction of pathway feasibility caused by the unrealistic assumption of free intermediate metabolites.This allowed us to correct the pathway structures of L-serine and L-tryptophan.A specific analysis explains the application method of the EcoETM-like model and demonstrates its potential and value in correcting the prediction results in pathway structure by resolving the conflict between different constraints and incorporating the evolved roles of enzymes as reaction compartments.Notably,this work also reveals the trade-off between product yield and thermodynamic feasibility.Our work is of great value for the structural improvement of constraints-based models.