期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Microencapsulation of stearic acid with polymethylmethacrylate using iron(Ⅲ) chloride as photo-initiator for thermal energy storage 被引量:4
1
作者 Ting Zhang Minmin Chen +1 位作者 Yu Zhang Yi Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1524-1532,共9页
Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoiniti... Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoinitiator,SA/PMMA microcapsules were prepared and various techniques were employed to determine the ignition mechanism,structural characteristics and thermal properties of the composite.The results shown that the microcapsules containing SA with maximum percentage of 52.20 wt% formed by radical mechanism and only physical interactions existed in the components both in the prepared process and subsequent use.The phase change temperatures and latent heats of the microencapsulated SA were measured as 55.3 °C and 102.1 J·g^(-1) for melting,and 48.8 °C and 102.8 J·g^(-1) for freezing,respectively.Thermal gravimetric analysis revealed that SA/PMMA has good thermal durability in working temperature range.The results of accelerated thermal cycling test are all shown that the SA/PMMA have excellent thermal reliability and chemical stability although they were subjected 1000 melting/freezing cycles.In summary,the comparable thermal storage ability and good thermal reliability facilitated SA/PMMA to be considered as a viable candidate for thermal energy storage.The successful fabrication of SA/PMMA capsules indicates that ferric chloride is a prominent candidate for synthesizing PMMA containing PCM composite. 展开更多
关键词 Thermal energy storage Phase change material Microencapsulation Thermodynamic properties Synthesis Photochemistry
下载PDF
Thermodynamic and rate variational formulation of models for inhomogeneous gradient materials with microstructure and application to phase field modeling 被引量:1
2
作者 Svyatoslav Gladkov Bob Svendsen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第2期162-172,共11页
In this work,thermodynamic models for the energetics and kinetics of inhomogeneous gradient materials with microstructure are formulated in the context of continuum thermodynamics and material theory.For simplicity,at... In this work,thermodynamic models for the energetics and kinetics of inhomogeneous gradient materials with microstructure are formulated in the context of continuum thermodynamics and material theory.For simplicity,attention is restricted to isothermal conditions.The materials of interest here are characterized by(1) first- and secondorder gradients of the deformation field and(2) a kinematic microstructure field and its gradient(e.g.,in the sense of director,micromorphic or Cosserat microstructure).Material inhomogeneity takes the form of multiple phases and chemical constituents,modeled here with the help of corresponding phase fields.Invariance requirements together with the dissipation principle result in the reduced model field and constitutive relations.Special cases of these include the wellknown Cahn-Hilliard and Ginzburg-Landau relations.In the last part of the work,initial boundary value problems for this class of materials are formulated with the help of rate variational methods. 展开更多
关键词 Continuum thermodynamics Material inhomogeneity Conservative Non-conservative phase fields
下载PDF
Thermodynamic Analysis on Interaction between Molten Ti Alloys and Oxide Molding Materials 被引量:1
3
作者 Hongsheng DING Jun JIA Jingiie GUO and Yanqing SU National Key Laboratory of Precision Hot Processing of Metals, Harbin 150001, China HengZhi FU and Jinshan LI State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’ 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期99-100,共2页
A thermodynamic model has been built up for the interactions between molten Ti alloys and oxide molding materials in the way of decomposition and solution of molding materials, then the influences on the reaction free... A thermodynamic model has been built up for the interactions between molten Ti alloys and oxide molding materials in the way of decomposition and solution of molding materials, then the influences on the reaction free energy changes have been calculated and discussed. 展开更多
关键词 TI Thermodynamic Analysis on Interaction between Molten Ti Alloys and Oxide Molding Materials
下载PDF
Applications of low temperature calorimetry in material research
4
作者 Xin Liu Jipeng Luo +2 位作者 Nan Yin Zhi-Cheng Tan Quan Shi 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第5期664-670,共7页
Low temperature calorimetry is an experimental method of heat capacity measurements, and heatcapacity is one of the most important and fundamental thermodynamic properties of substances. Theheat capacity can provide a... Low temperature calorimetry is an experimental method of heat capacity measurements, and heatcapacity is one of the most important and fundamental thermodynamic properties of substances. Theheat capacity can provide an average evaluation of the thermal property of a sample since it is a bull(property of substances. In the other hand, the condensed states of substances could be mainly controlledby the molecular motions, intermolecular interactions, and interplay among molecular structures. Thephysical property reflected in a material may be closely related to the energy changes in these threefactors, which can be directly observed in a heat capacity curve. Therefore, low temperature calorimetryhas been used not only to obtain heat capacity, entropy, enthalpy and Gibbs free energy, but also toinvestigate and understand lattice vibrations, metals, superconductivity, electronic and nuclearmagnetism, dilute magnetic systems and structural transitions. In this review, we have presented theconcept of low temperature calorimetry and its applications in the related field of material researches,such as nano-materials, magnetic materials, ferroelectric materials, phase change materials and othermaterials. 展开更多
关键词 Low Temperature Calorimetry Heat Capacity thermodynamics Physical Propertie Materials
原文传递
Phase Stability in Mechanically Alloyed Mg–Ni System Studied by Experiments and Thermodynamic Calculations
5
作者 Mohammad Hossein Enayati Fathallah Karimzadeh +1 位作者 Soheil Sabooni Majid Jafari 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第8期1002-1007,共6页
In this study, microstructural evolution of Mg–Ni alloy during mechanical alloying(MA) was investigated.Also, a thermodynamic approach was utilized to predict the most stable phases formed in Mg–Ni alloy after MA.... In this study, microstructural evolution of Mg–Ni alloy during mechanical alloying(MA) was investigated.Also, a thermodynamic approach was utilized to predict the most stable phases formed in Mg–Ni alloy after MA. The phase composition and microstructural properties of Mg–Ni alloy were assessed by X-ray diffractometry, high-resolution field emission scanning electron microscopy and high-resolution transmission electron microscopy. The results showed that ball milling of magnesium and nickel powder mixture for 70 h yields nanostructural Mg2Ni compound with an average grain size of ~20 nm. Thermodynamic calculations revealed that in the composition ranges of 0.0 / XMg/ 0.03(at.%)and 0.97 / XMg/ 1, there is no driving force for amorphous phase formation. In the composition range of 0.07 / XMg/ 0.93, the change of Gibbs free energy for amorphous phase formation was more negative than solid solution.While for XMg= 0.66(nominal composition of Mg2Ni intermetallic phase), the change of Gibbs free energy for intermetallic phase was found to be more negative than both amorphous and solid solution phases indicating that Mg2Ni intermetallic compound is the most stable phase, in agreement with the experimental observations. 展开更多
关键词 Mechanical alloying Nanocrystalline Hydrogen storage material Mg2Ni thermodynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部