This paper combines a review of recent advances in quantum thermodynamics, including work on objective collapse (Zurek’s quantum Darwinism) and quantum gravity (Verlinde’s quantum gravity explanation), with a redefi...This paper combines a review of recent advances in quantum thermodynamics, including work on objective collapse (Zurek’s quantum Darwinism) and quantum gravity (Verlinde’s quantum gravity explanation), with a redefinition of entropy generation as systems’ change process. These concepts are used as systems’ behaviour analysis tools to allow us to revisit Hartle and Hawking’s 1983 quantum universe and develop a hypothesis for how physically a universe starting in a quantum state could evolve into our current universe, based on systems analysis. The outcome of this analysis raises a question: do we already have the elements of a “theory of everything” hiding in plain sight within recent advances in quantum thermodynamics?展开更多
The thermodynamic(energy and exergy)analysis of a condensate heating system,its segments,and components from a marine steam propulsion plant with steam reheating is performed in this paper.It is found that energy anal...The thermodynamic(energy and exergy)analysis of a condensate heating system,its segments,and components from a marine steam propulsion plant with steam reheating is performed in this paper.It is found that energy analysis of any condensate heating system should be avoided because it is highly influenced by the measuring equipment accuracy and precision.All the components from the observed marine condensate heating system have energy destructions lower than 3 kW,while the energy efficiencies of this system are higher than 99%.The exergy efficiency of closed condensate heaters continuously increases from the lowest to the highest steam pressures(from 70.10%to 92.29%).The ambient temperature variation between 5℃and 45℃notably influences the exergy efficiency change of both low pressure heaters and the low pressure segment equal to 31.61%,12.37%,and 18.35%,respectively.展开更多
Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produc...Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produced from capturing the pressure energy has been calculated. Based on the comprehensive thermodynamic analysis, two systems have been proposed to capture pressure energy of natural gas to generate electricity. In this study, the expression of exergy is given which can be used in evaluating purposes. A problem with this multidisciplinary study is the complicated boundary condition. In conclusion, a technical prospect on recoverable natural gas pressure energy has been presented based on total energy system theory.展开更多
There is a growing interest in the electrical energy storage system, especially for matching intermittent sources of renewable energy with customers' demand. Furthermore, it is possible, with these system, to level t...There is a growing interest in the electrical energy storage system, especially for matching intermittent sources of renewable energy with customers' demand. Furthermore, it is possible, with these system, to level the absorption peak of the electric network (peak shaving) and the advantage of separating the production phase from the exertion phase (time shift). CAES (compressed air energy storage systems) are one of the most promising technologies of this field, because they are characterized by a high reliability, low environmental impact and a remarkable energy density. The main disadvantage of big systems is that they depend on geological formations which are necessary to the storage. The micro-CAES system, with a rigid storage vessel, guarantees a high portability of the system and a higher adaptability even with distributed or stand-alone energy productions. This article carries out a thermodynamical and energy analysis of the micro-CAES system, as a result of the mathematical model created in a Matlab/Simulink environment. New ideas will be discussed, as the one concerning the quasi-isothermal compression/expansion, through the exertion of a biphasic mixture, that will increase the total system efficiency and enable a combined production of electric, thermal and refrigeration energies. The exergy analysis of the results provided by the simulation of the model reports that more than one third of the exergy input to the system is lost. This is something promising for the development of an experimental device.展开更多
In this study, exergy dynamic and advanced exergy analyses are applied to theturbojet engine to assess its mexogenous, endogenous, exogenous, avoidable and unavoidableexergies under the environment conditions of 15 ...In this study, exergy dynamic and advanced exergy analyses are applied to theturbojet engine to assess its mexogenous, endogenous, exogenous, avoidable and unavoidableexergies under the environment conditions of 15 C temperature and 1 bar pressure. Themaximum exergy point in the turbojet engine is found for the combustor in which C11H23(Jet-A1) fuel is combusted with air, while the minimum one is determined for the aircompressor head where the free air enters. The combustion chamber has the maximum fuel,product and irreversibility rates and the air compressor has the minimum fuel and product ex-ergy values, while the minimum irreversibility is found for the turbine. Maximum improvementpotential rate is found for the combustion chamber (5141.27 kW), while minimum rate is deter-mined for the turbine of system (6.95 kW). Also, the turbine component has the highest exergyefficiency (97.20%) due to its expansion process, while combustion chamber component hasthe lowest exergy efficiency (55.39%) due to low efficient combustion process of the fuel.Furthermore, the mexogenous exergy destructions from maximum to minimum are found for the combustion chamber, air compressor and gas turbine units, respectively. Considering exergydynamic analysis, the mexogenous exergy destruction rates of the combustion chamber, aircompressor and gas turbine are found as 184.4 kW, 103.97 kW and 9.99 kW, respectively.Considering all results, the combustion chamber is the primer component to be handled for bet-ter efficiency and improvement.展开更多
Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refri...Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment.Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems.In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration(SP-VCR)system in the region of Gharda颽(Southern Algeria)utilizing R1234ze(E)fluid as an eco-friendly substitute for R134a refrigerant.A MATLAB-based numerical model was developed to evaluate losses in different system components and the exergy efficiency of the SP-VCR system.Furthermore,a parametric study was carriedout to analyze the impact of various operating conditions on the system’s exergy destruction and efficiency.The obtained results revealed that,for both refrigerants,the compressor exhibited the highest exergy destruction,followed by the condenser,expansion valve,and evaporator.However,the system using R1234ze(E)demonstrated lower irreversibility compared to that using R134a refrigerant.The improvements made with R1234ze are 71.95%for the compressor,39.13%for the condenser,15.38%for the expansion valve,5%for the evaporator,and 54.76%for the overall system,which confirm the potential of R1234ze(E)as a promising alternative to R134a for cooling applications.展开更多
An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic tempera...An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic temperatures were defined, then the actual power cycle or refrigeration/heat pump cycle was transformed into the equivalent reversible Carnot or reverse Carnot cycles for thermodynamic analysis. The derived effective thermodynamic temperature of the hot reservoir of the equivalent reverse Camot cycle is the basis of the proposed method. The combined diagram of TR-h and TR-q was adopted for the analy- sis of the system performance and the exergy consumption, which takes advantage of the visual expression of the heat/work exchange and the enthalpy change, and is convenient for the calculation of the coefficient of performance and exergy con- sumptions. Take a heat pump water heater with refrigerant of R22 for example, the proposed method was systematically intro- duced, and the fitting formulas of the effective thermodynamic temperatures were given as demonstration. The results show that the proposed method has advantage and well application foreground in the performance simulation and estimation under the variable working conditions.展开更多
This research paper aims to perform dynamics analysis,3E assessment including energy,exergy,exergoeconomic,and the multiobjective evolutionary optimization on a novel solar Li-Br absorption refrigeration cycle.The res...This research paper aims to perform dynamics analysis,3E assessment including energy,exergy,exergoeconomic,and the multiobjective evolutionary optimization on a novel solar Li-Br absorption refrigeration cycle.The research is time-dependent,owing to solar radiation variability during different timelines.Theoretically,all the necessary thermodynamic,energy,and exergy equations are applied initially.This is followed by the thermoeconomic analysis,which takes place after defining the designing variables during the thermoeconomic optimization process and is presented together with the economic relations of the system and its thermoeconomic characteristics.Furthermore,the sensitivity analysis is undertaken,the source of system inefficiency is determined,the multi-objective evolutionary optimization of the whole system is carried out,and the optimal values are compared with the primary stage.Engineering Equation Solver(EES)software has been used to accomplish comprehensive analyses.As part of the validation process,the results of the research are compared with those published previously and are found to be relatively consistent.展开更多
A unified theory of non-equilibrium radiation thermodynamics is always in search as it is meaningful for solar energy utilization.An exergy analysis of photo-thermal interaction process between the solar radiation ene...A unified theory of non-equilibrium radiation thermodynamics is always in search as it is meaningful for solar energy utilization.An exergy analysis of photo-thermal interaction process between the solar radiation energy and solar receiver is conducted in this paper.The non-equilibrium radiation thermodynamic system is described.The thermodynamic process of photo-thermal interaction between the solar radiation and solar receiver is introduced.Energy,exergy and entropy equations for the photo-thermal process are provided.Formulas for calculating the optimum receiving temperatures of the solar receiver under both non-concentration and solar concentration conditions are presented.A simple solar receiver is chosen as the calculation example to launch the exergy analysis under non-concentration condition.Furthermore,the effect analysis of solar concentration on the thermodynamic performance of the solar receiver for solar thermal utilization is carried out.The analysis results demonstrate that both the output exergy flux and efficiency of the solar receiver can be improved by increasing the solar concentration ratio during the solar thermal utilization process.The formulas and results provided in this paper may be used as a theoretical reference for the further studies of non-equilibrium radiation thermodynamic theory and solar thermal utilization.展开更多
This study focuses on the heat transfer characteristics of the evaporation terminal,the cool distribute unit(CDU)and refrigerant flow distribution of a water cooled multi-spilit heat pipe system(MSHPS)used in data cen...This study focuses on the heat transfer characteristics of the evaporation terminal,the cool distribute unit(CDU)and refrigerant flow distribution of a water cooled multi-spilit heat pipe system(MSHPS)used in data center.The finite time thermodynamic analysis,the exergy method and the software SIMULINK was employed to build the simulation model of the combined system.The results show that the IT servers should concentrate on arranging at the location below 1.3 m.The CDU has a heat transfer of about 74 J in a period of 6 s.And the optimum flow rate of the CDU is 0.82 kg/s.The flow distribution characteristic of a CDU which connect 2 heat pipe evaporator terminals of 6 kW was calculated,and the working fluid is R22.Then the free cooling time,part time free cooling and energy saving potential in major cities of China were analysised.The energy saving potential is from 61%to 25%.The results are of great significance for the operational control and practical application of a MSHPS and other pipe-net systems.展开更多
The energy and exergy analyses of the absorption refrigeration system (ARS) using H2O-[mmim][DMP] mixture were investigated for a wide range of temperature. The equilibrium Dühring (P-T-XIL) and enthalpy (h-T-XIL...The energy and exergy analyses of the absorption refrigeration system (ARS) using H2O-[mmim][DMP] mixture were investigated for a wide range of temperature. The equilibrium Dühring (P-T-XIL) and enthalpy (h-T-XIL) of mixture were assessed using the excess Gibbs free non-random two liquid (NRTL) model for a temperature range ??? of 20°C to 140°C and XIL from 0.1 to 0.9. The performance validation of the ARS cycle showed a better coefficient of performance (COP) of 0.834 for H2O-[mmim][DMP] in comparison to NH3-H2O, H2O-LiBr, H2O-[emim][DMP], and H2O-[emim][BF4]. Further, ARS performances with various operating temperatures of the absorber (Ta), condenser (Tc), generator (Tg), and evaporator (Te) were simulated and optimized for a maximum COP and exergetic COP (ECOP). The effects of Tg from 50°C to 150°C and Ta and Tc from 30°C to 50°C on COP and ECOP, the Xa, Xg, and circulation ratio (CR) of the ARS were evaluated and optimized for Te from 5°C to 15°C. The optimization revealed that Tg needed to achieve a maximum COP which was more than that for a maximum ECOP. Therefore, this investigation provides criteria to select low grade heat source temperature. Most of the series flow of the cases of cooling water from the condenser to the absorber was found to be better than the absorber to the condenser.展开更多
先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)仿真建模及分析是其工程实践的基础。然而,目前模型一般基于理想工况建立,分析结果与实际工况相偏差较大,无法指导工程应用。为此,在传统热力...先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)仿真建模及分析是其工程实践的基础。然而,目前模型一般基于理想工况建立,分析结果与实际工况相偏差较大,无法指导工程应用。为此,在传统热力学模型基础上,考虑了空气流动阻力损失和能量转换设备损耗等因素,建立了面向工程应用的AA-CAES模型并以200MW盐穴AA-CAES系统为例进行了分析。同时,对系统效率分析方法进行改进并对其进行了先进㶲分析。结果表明,空气管道㶲损失占总㶲损失比例接近7%,能量转换设备损耗导致电-电效率比轴功效率低5%,二者对系统性能影响较大,在进行工程设计时不可以忽略。系统各部件可避免㶲损失占比均较大,表明系统具有较大的性能提升潜力。各部件㶲损失为其内部㶲损失,与其他部件是否工作在最佳状态关系不大。展开更多
文摘This paper combines a review of recent advances in quantum thermodynamics, including work on objective collapse (Zurek’s quantum Darwinism) and quantum gravity (Verlinde’s quantum gravity explanation), with a redefinition of entropy generation as systems’ change process. These concepts are used as systems’ behaviour analysis tools to allow us to revisit Hartle and Hawking’s 1983 quantum universe and develop a hypothesis for how physically a universe starting in a quantum state could evolve into our current universe, based on systems analysis. The outcome of this analysis raises a question: do we already have the elements of a “theory of everything” hiding in plain sight within recent advances in quantum thermodynamics?
基金This research is supported by the Croatian Science Foundation under the project IP-2018-01-3739,CEEPUS network CIII-HR-0108,European Regional Development Fund under the grant KK.01.1.1.01.0009(DATACROSS)project CEKOM under the grant KK.01.2.2.03.0004,CEI project“COVIDAi”(305.6019-20)University of Rijeka Scientific Grants uniri-tehnic-18-275-1447,uniritehnic-18-18-1146 and uniri-tehnic-18-14.
文摘The thermodynamic(energy and exergy)analysis of a condensate heating system,its segments,and components from a marine steam propulsion plant with steam reheating is performed in this paper.It is found that energy analysis of any condensate heating system should be avoided because it is highly influenced by the measuring equipment accuracy and precision.All the components from the observed marine condensate heating system have energy destructions lower than 3 kW,while the energy efficiencies of this system are higher than 99%.The exergy efficiency of closed condensate heaters continuously increases from the lowest to the highest steam pressures(from 70.10%to 92.29%).The ambient temperature variation between 5℃and 45℃notably influences the exergy efficiency change of both low pressure heaters and the low pressure segment equal to 31.61%,12.37%,and 18.35%,respectively.
基金Supported by Tianjin Institute of Urban Construction(03046)
文摘Current research and ways of capturing mechanical energy are discussed in this paper. By the aid of the comprehensive thermodynamic analysis and Aspen simulation tool, the amount of a vailable work that can be produced from capturing the pressure energy has been calculated. Based on the comprehensive thermodynamic analysis, two systems have been proposed to capture pressure energy of natural gas to generate electricity. In this study, the expression of exergy is given which can be used in evaluating purposes. A problem with this multidisciplinary study is the complicated boundary condition. In conclusion, a technical prospect on recoverable natural gas pressure energy has been presented based on total energy system theory.
文摘There is a growing interest in the electrical energy storage system, especially for matching intermittent sources of renewable energy with customers' demand. Furthermore, it is possible, with these system, to level the absorption peak of the electric network (peak shaving) and the advantage of separating the production phase from the exertion phase (time shift). CAES (compressed air energy storage systems) are one of the most promising technologies of this field, because they are characterized by a high reliability, low environmental impact and a remarkable energy density. The main disadvantage of big systems is that they depend on geological formations which are necessary to the storage. The micro-CAES system, with a rigid storage vessel, guarantees a high portability of the system and a higher adaptability even with distributed or stand-alone energy productions. This article carries out a thermodynamical and energy analysis of the micro-CAES system, as a result of the mathematical model created in a Matlab/Simulink environment. New ideas will be discussed, as the one concerning the quasi-isothermal compression/expansion, through the exertion of a biphasic mixture, that will increase the total system efficiency and enable a combined production of electric, thermal and refrigeration energies. The exergy analysis of the results provided by the simulation of the model reports that more than one third of the exergy input to the system is lost. This is something promising for the development of an experimental device.
文摘In this study, exergy dynamic and advanced exergy analyses are applied to theturbojet engine to assess its mexogenous, endogenous, exogenous, avoidable and unavoidableexergies under the environment conditions of 15 C temperature and 1 bar pressure. Themaximum exergy point in the turbojet engine is found for the combustor in which C11H23(Jet-A1) fuel is combusted with air, while the minimum one is determined for the aircompressor head where the free air enters. The combustion chamber has the maximum fuel,product and irreversibility rates and the air compressor has the minimum fuel and product ex-ergy values, while the minimum irreversibility is found for the turbine. Maximum improvementpotential rate is found for the combustion chamber (5141.27 kW), while minimum rate is deter-mined for the turbine of system (6.95 kW). Also, the turbine component has the highest exergyefficiency (97.20%) due to its expansion process, while combustion chamber component hasthe lowest exergy efficiency (55.39%) due to low efficient combustion process of the fuel.Furthermore, the mexogenous exergy destructions from maximum to minimum are found for the combustion chamber, air compressor and gas turbine units, respectively. Considering exergydynamic analysis, the mexogenous exergy destruction rates of the combustion chamber, aircompressor and gas turbine are found as 184.4 kW, 103.97 kW and 9.99 kW, respectively.Considering all results, the combustion chamber is the primer component to be handled for bet-ter efficiency and improvement.
文摘Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment.Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems.In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration(SP-VCR)system in the region of Gharda颽(Southern Algeria)utilizing R1234ze(E)fluid as an eco-friendly substitute for R134a refrigerant.A MATLAB-based numerical model was developed to evaluate losses in different system components and the exergy efficiency of the SP-VCR system.Furthermore,a parametric study was carriedout to analyze the impact of various operating conditions on the system’s exergy destruction and efficiency.The obtained results revealed that,for both refrigerants,the compressor exhibited the highest exergy destruction,followed by the condenser,expansion valve,and evaporator.However,the system using R1234ze(E)demonstrated lower irreversibility compared to that using R134a refrigerant.The improvements made with R1234ze are 71.95%for the compressor,39.13%for the condenser,15.38%for the expansion valve,5%for the evaporator,and 54.76%for the overall system,which confirm the potential of R1234ze(E)as a promising alternative to R134a for cooling applications.
基金supported by the National Natural Science Foundation of China (Grant No. 51076147)
文摘An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic temperatures were defined, then the actual power cycle or refrigeration/heat pump cycle was transformed into the equivalent reversible Carnot or reverse Carnot cycles for thermodynamic analysis. The derived effective thermodynamic temperature of the hot reservoir of the equivalent reverse Camot cycle is the basis of the proposed method. The combined diagram of TR-h and TR-q was adopted for the analy- sis of the system performance and the exergy consumption, which takes advantage of the visual expression of the heat/work exchange and the enthalpy change, and is convenient for the calculation of the coefficient of performance and exergy con- sumptions. Take a heat pump water heater with refrigerant of R22 for example, the proposed method was systematically intro- duced, and the fitting formulas of the effective thermodynamic temperatures were given as demonstration. The results show that the proposed method has advantage and well application foreground in the performance simulation and estimation under the variable working conditions.
基金supported by the National Natural Science Foundation of China(Grant No.52176016)。
文摘This research paper aims to perform dynamics analysis,3E assessment including energy,exergy,exergoeconomic,and the multiobjective evolutionary optimization on a novel solar Li-Br absorption refrigeration cycle.The research is time-dependent,owing to solar radiation variability during different timelines.Theoretically,all the necessary thermodynamic,energy,and exergy equations are applied initially.This is followed by the thermoeconomic analysis,which takes place after defining the designing variables during the thermoeconomic optimization process and is presented together with the economic relations of the system and its thermoeconomic characteristics.Furthermore,the sensitivity analysis is undertaken,the source of system inefficiency is determined,the multi-objective evolutionary optimization of the whole system is carried out,and the optimal values are compared with the primary stage.Engineering Equation Solver(EES)software has been used to accomplish comprehensive analyses.As part of the validation process,the results of the research are compared with those published previously and are found to be relatively consistent.
基金This study is financially supported by the Excellent Youth Foundation of Jilin Province of China(Grant No.20190103062JH)the Special Project for the Outstanding Youth Cultivation of Jilin City of China(Grant No.20190104126).
文摘A unified theory of non-equilibrium radiation thermodynamics is always in search as it is meaningful for solar energy utilization.An exergy analysis of photo-thermal interaction process between the solar radiation energy and solar receiver is conducted in this paper.The non-equilibrium radiation thermodynamic system is described.The thermodynamic process of photo-thermal interaction between the solar radiation and solar receiver is introduced.Energy,exergy and entropy equations for the photo-thermal process are provided.Formulas for calculating the optimum receiving temperatures of the solar receiver under both non-concentration and solar concentration conditions are presented.A simple solar receiver is chosen as the calculation example to launch the exergy analysis under non-concentration condition.Furthermore,the effect analysis of solar concentration on the thermodynamic performance of the solar receiver for solar thermal utilization is carried out.The analysis results demonstrate that both the output exergy flux and efficiency of the solar receiver can be improved by increasing the solar concentration ratio during the solar thermal utilization process.The formulas and results provided in this paper may be used as a theoretical reference for the further studies of non-equilibrium radiation thermodynamic theory and solar thermal utilization.
基金Thanks for the support of Hunan postdoctoral fund(Number:198514)。
文摘This study focuses on the heat transfer characteristics of the evaporation terminal,the cool distribute unit(CDU)and refrigerant flow distribution of a water cooled multi-spilit heat pipe system(MSHPS)used in data center.The finite time thermodynamic analysis,the exergy method and the software SIMULINK was employed to build the simulation model of the combined system.The results show that the IT servers should concentrate on arranging at the location below 1.3 m.The CDU has a heat transfer of about 74 J in a period of 6 s.And the optimum flow rate of the CDU is 0.82 kg/s.The flow distribution characteristic of a CDU which connect 2 heat pipe evaporator terminals of 6 kW was calculated,and the working fluid is R22.Then the free cooling time,part time free cooling and energy saving potential in major cities of China were analysised.The energy saving potential is from 61%to 25%.The results are of great significance for the operational control and practical application of a MSHPS and other pipe-net systems.
基金This work was jointly supported by Qatar University International Research Collaboration Co Fund(Grant No.IRCC-2019-012).
文摘The energy and exergy analyses of the absorption refrigeration system (ARS) using H2O-[mmim][DMP] mixture were investigated for a wide range of temperature. The equilibrium Dühring (P-T-XIL) and enthalpy (h-T-XIL) of mixture were assessed using the excess Gibbs free non-random two liquid (NRTL) model for a temperature range ??? of 20°C to 140°C and XIL from 0.1 to 0.9. The performance validation of the ARS cycle showed a better coefficient of performance (COP) of 0.834 for H2O-[mmim][DMP] in comparison to NH3-H2O, H2O-LiBr, H2O-[emim][DMP], and H2O-[emim][BF4]. Further, ARS performances with various operating temperatures of the absorber (Ta), condenser (Tc), generator (Tg), and evaporator (Te) were simulated and optimized for a maximum COP and exergetic COP (ECOP). The effects of Tg from 50°C to 150°C and Ta and Tc from 30°C to 50°C on COP and ECOP, the Xa, Xg, and circulation ratio (CR) of the ARS were evaluated and optimized for Te from 5°C to 15°C. The optimization revealed that Tg needed to achieve a maximum COP which was more than that for a maximum ECOP. Therefore, this investigation provides criteria to select low grade heat source temperature. Most of the series flow of the cases of cooling water from the condenser to the absorber was found to be better than the absorber to the condenser.
文摘先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)仿真建模及分析是其工程实践的基础。然而,目前模型一般基于理想工况建立,分析结果与实际工况相偏差较大,无法指导工程应用。为此,在传统热力学模型基础上,考虑了空气流动阻力损失和能量转换设备损耗等因素,建立了面向工程应用的AA-CAES模型并以200MW盐穴AA-CAES系统为例进行了分析。同时,对系统效率分析方法进行改进并对其进行了先进㶲分析。结果表明,空气管道㶲损失占总㶲损失比例接近7%,能量转换设备损耗导致电-电效率比轴功效率低5%,二者对系统性能影响较大,在进行工程设计时不可以忽略。系统各部件可避免㶲损失占比均较大,表明系统具有较大的性能提升潜力。各部件㶲损失为其内部㶲损失,与其他部件是否工作在最佳状态关系不大。