期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Waste Heat Recovery from a Drier Receiver of an A/C Unit Using Thermoelectric Generators 被引量:1
1
作者 Ali Jaber Abdulhamed Aws Al-Akam +1 位作者 Ahmed A.Abduljabbar Mohammed H.Alkhafaji 《Energy Engineering》 EI 2023年第8期1729-1746,共18页
Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer rec... Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer receiver(FDR)of an air conditioning(A/C)system,which would otherwise go to waste.The study aims to build a set of thermoelectric generators(TEG)to collect the waste heat of the FDR and generate low-power electricity.A novel electrical circuit with two transformers is designed and fabricated to produce a more stable voltage for operation and charging.The thermoelectric generator(TEGs)was installed on the FDR of the A/C unit.The test showed that climate conditions have a significant impact on the output power generated from the system.The results showed that the peak voltage recorded in the current study is 5.2 V per day(wet,cold,and wind weather)with an output power of 0.2 W.These values are acceptable for powering the load and charging a single battery with 3.5 V as the voltage increases battery 0.1 V/20 min charge.A case study of operating the emergency signs in a building was considered.The current heat recovery system is deemed to be easily installed and can be connected to a network of TEGs to produce more power. 展开更多
关键词 thermoelectric generator waste heat filter dryer receiver air conditioning heat recovery
下载PDF
Thermoelectric generators and their applications:Progress,challenges,and future prospects
2
作者 Nassima Radouane 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期108-125,共18页
Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck ... Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck effect has been used to illustrate the capacity of thermoelectric generators(TEGs)to directly convert thermal energy to electrical energy.They are also ecologically beneficial since they do not include chemical products,function quietly because they lack mechanical structures and/or moving components,and may be built using different fabrication technologies such as three-dimentional(3D)printing,silicon technology,and screen printing,etc.TEGs are also position-independent and have a long operational lifetime.TEGs can be integrated into bulk and flexible devices.This review gives further investigation of TEGs,beginning with a full discussion of their operating principle,kinds,materials utilized,figure of merit,and improvement approaches,which include various thermoelectric material arrangements and utilised technologies.This paper also discusses the use of TEGs in a variety of disciplines such as automobile and biomedical. 展开更多
关键词 thermoelectric generator(TEG) thermoelectric devices figure of merit flexible TEG automotive exhaust TEG
下载PDF
Powering a Low Power Wireless Sensor in a Harsh Industrial Environment: Energy Recovery with a Thermoelectric Generator and Storage on Supercapacitors
3
作者 Vincent Boitier Bruno Estibals Lionel Seguier 《Energy and Power Engineering》 2023年第11期372-398,共27页
Wireless sensor networks are widely used for monitoring in remote areas. They mainly consist of wireless sensor nodes, which are usually powered by batteries with limited capacity, but are expected to last for long pe... Wireless sensor networks are widely used for monitoring in remote areas. They mainly consist of wireless sensor nodes, which are usually powered by batteries with limited capacity, but are expected to last for long periods of time. To overcome these limitations and achieve perpetual autonomy, an energy harvesting technique using a thermoelectric generator (TEG) coupled with storage on supercapacitors is proposed. The originality of the work lies in the presentation of a maintenance-free, robust, and tested solution, well adapted to a harsh industrial context with a permanent temperature gradient. The harvesting part, which is attached to the hot spot in a few seconds using magnets, can withstand temperatures of 200°C. The storage unit, which contains the electronics and supercapacitors, operates at temperatures of up to 80°C. More specifically, this article describes the final design of a 3.3 V 60 mA battery-free power supply. An analysis of the thermal potential and the electrical power that can be recovered is presented, followed by the design of the main electronic stages: energy recovery using a BQ25504, storage on supercapacitors and finally shaping the output voltage with a boost (TPS610995) followed by an LDO (TPS71533). 展开更多
关键词 Energy Recovery Battery-Free System SUPERCAPACITOR thermoelectric generator TEG BQ25504 Energy Management Thermal Gradient
下载PDF
Textile-Based Thermoelectric Generators and Their Applications 被引量:2
4
作者 Liming Wang Kun Zhang 《Energy & Environmental Materials》 2020年第1期67-79,共13页
With the rapid development of Internet of Things and miniaturized electronics, the demand for wearable power sources with high reliability and long duty cycle promotes the exploration of wearable thermoelectric genera... With the rapid development of Internet of Things and miniaturized electronics, the demand for wearable power sources with high reliability and long duty cycle promotes the exploration of wearable thermoelectric generators(TEGs). In particular, textile-based TEGs that can perpetually convert the ubiquitous temperature gradient between human body and ambience into electrical energy have attracted intensive attention to date.These lightweight and three-dimensional deformable TEGs comprised of fibers, filaments, yarns, or fabrics offer unique merits as wearable power source in comparison with conventional TEGs. In this review, we systematically summarize the state-of-the-art strategies for textile-based TEGs, including the structure design, fabrication, device performance, and application. Existing critical issues and future research emphasis are also discussed. 展开更多
关键词 ARCHITECTURE passive sensing peltier cooling TEXTILE thermoelectric generator
下载PDF
Impacts of thermal and electric contact resistance on the material design in segmented thermoelectric generators
5
作者 Junwei Zhao Zhengfei Kuang +2 位作者 Rui Long Zhichun Liu Wei Liu 《Energy Storage and Saving》 2024年第1期5-15,共11页
Segmented thermoelectric generators(STEGs)can exhibit present superior performance than those of the conventional thermoelectric generators.Thermal and electrical contact resistances exist between the thermoelectric m... Segmented thermoelectric generators(STEGs)can exhibit present superior performance than those of the conventional thermoelectric generators.Thermal and electrical contact resistances exist between the thermoelectric material interfaces in each thermoelectric leg.This may significantly hinder performance improvement.In this study,a five-layer STEG with three pairs of thermoelectric(TE)materials was investigated considering the thermal and electrical contact resistances on the material contact surface.The STEG performance under different contact resistances with various combinations of TE materials were analyzed.The relationship between the material sequence and performance indicators under different contact resistances is established by machine learning.Based on the genetic algorithm,for each contact resistance combination,the optimal material sequences were identified by maximizing the electric power and energy conversion efficiency.To reveal the underlying mechanism that determines the heat-to-electrical performance,the total electrical resistance,output voltage,ZT value,and temperature distribution under each optimized scenario were analyzed.The STEG can augment the heat-to-electricity performance only at small contact resistances.A large contact resistance significantly reduces the performance.At an electrical contact resistance of RE=10^(-3) K⋅m^(2)⋅W^(-1) and thermal contact resistance of RT=10-8Ω⋅m^(2),the maximum electric power was reduced to 5.71 mW(90.86 mW without considering the contact resistance).And the maximum energy conversion efficiency is lowered to 2.54%(12.59%without considering the contact resistance). 展开更多
关键词 Segmented thermoelectric generator Contact resistance Material design Machine learning
原文传递
Mechanical properties of thermoelectric generators 被引量:1
6
作者 Xin Bao Shuaihang Hou +9 位作者 Zhixin Wu Xiaodong Wang Li Yin Yijie Liu Huolun He Sichen Duan Baolin Wang Jun Mao Feng Cao Qian Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第17期64-74,共11页
To satisfy the requirements of practical applications,thermoelectric generators should be highly efficient and mechanically robust.Recently,progress in designing high-performance thermoelectric generators has been mad... To satisfy the requirements of practical applications,thermoelectric generators should be highly efficient and mechanically robust.Recently,progress in designing high-performance thermoelectric generators has been made.However,the mechanical properties of thermoelectric generators are still unsatisfactory.In this review,studies on the mechanical properties of thermoelectric generators are summarized.The me-chanical properties of bulk thermoelectric generators will be first discussed.In this section,the mechan-ical properties of thermoelectric materials and the strategies for improving their mechanical properties are emphasized.Since the device’s failure usually occurs at the interface between the thermoelectric ma-terials and electrode,the joint strength of electrodes and thermoelectric materials will be overviewed.After that,the mechanical properties of the inorganic thin-film thermoelectric devices will be discussed.Since the figure of merit for the flexibility of thermoelectric materials depends on the film thickness,elastic modulus,and yield strength,the synthesis methods of thin-film thermoelectric materials will be reviewed.Finally,this review will be concluded with a discussion on flexible organic thermoelectric de-vices and flexible devices using bulk legs. 展开更多
关键词 thermoelectric generator Mechanical properties INTERFACE Joint strength
原文传递
Numerical and Experimental Study on Performance of a Low-Backpressure Polyhedral Thermoelectric Generator for Waste Heat Recovery
7
作者 QUAN Rui LI Yangxin +2 位作者 LI Tao CHANG Yufang YAN Huaicheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期109-124,共16页
Optimized fin arrangement and dimension of heat exchanger can improve the maximum output power of thermoelectric generator(TEG)system which converts the wasted heat into electricity with thermoelectric modules(TEMs).C... Optimized fin arrangement and dimension of heat exchanger can improve the maximum output power of thermoelectric generator(TEG)system which converts the wasted heat into electricity with thermoelectric modules(TEMs).Considering that the geometric symmetry contributes to the temperature uniformity improvement and convenient TEMs arrangement,a low-backpressure TEG system based on a polyhedral-shape heat exchanger was developed.To assess the effect of inner topology and fin parameters on the heat transfer and output power of the TEG system,a realizable k-?turbulence based numerical model was established and validated to perform numerical simulations.The results demonstrate that increasing fin length,fin width and fin intersection angle are beneficial to the average surface temperature,temperature distribution uniformity and maximum output power of the TEG system.Moreover,decreasing fin spacing distance contributes to the enhanced average surface temperature and maximum power of TEG system,and has insignificant effect on its temperature uniformity.The inserted fins with optimal length,width,intersection angle and spacing distance enhance higher output power,whereas result in increasing backpressure.The maximum difference between the experimental and simulation results is 3.2%,which validates the feasibility of the established numerical model.It also provides a theoretical reference to the optimal design and performance analysis of low-backpressure TEG systems used in automobile exhaust heat recovery. 展开更多
关键词 heat exchanger thermoelectric generator inner topology fin parameters numerical model
原文传递
Solar thermoelectric generator and thermoelectric cooler performance:analysis and comparison using a different shape geometry
8
作者 ALkhadher Khalil Smail Sahnoun +3 位作者 Ahmed Elhassnaoui Said Yadir Abdellatif Obbadi Youssef Errami 《Clean Energy》 EI CSCD 2023年第6期1233-1246,共14页
Thermoelectric devices are one of the technologies used either to generate electricity by applying a temperature difference using thermal energy or as a heating/cooling system by applying an electrical voltage.The num... Thermoelectric devices are one of the technologies used either to generate electricity by applying a temperature difference using thermal energy or as a heating/cooling system by applying an electrical voltage.The number of materials required to produce a product is an important factor in determining its price.Production costs associated with these materials,as well as their availability and quality,play a crucial role in price determination by manufacturers.In this context,a method that employs a uniform volume distribution was implemented.This approach enabled the analysis to focus on other variables,thereby promoting a more precise and relevant evaluation of overall performance.Based on the finite element method,this study investigated the influence of geometric shape,including Rect-leg,Y-leg,Pin-leg and X-leg designs,on the performance of solar thermoelectric generators and thermoelectric coolers.The study was conducted considering the same hot alumina junction surface that receives solar radiation;however,the ef-fective surface,which corresponded to the heat flow area and had a similar area near the exposed surface,varied depending on the chosen leg geometry,thus impacting the heat flux due to the variation in thermal resistance.In the case of a solar thermoelectric generator,the Rect-leg model,having the same effective surface area,presented the lowest heat loss value resulting from convection and radiation in the heat spreader and the hot alumina plate.Under the same conditions,the Y-leg showed the highest value.The Rect-leg design generated,by using thermal and optical concentration,the highest output power of 0.028 and 0.054 W,and efficiency of 3.47%and 4.7%,respectively,whereas the Y-leg generated lower values of 0.006523 and 0.018744 W for power,and 2.83%and 2.71%for efficiency,respectively.In the case of the thermoelectric coolers,the Y-leg generated the highest temperature difference between the hot and cold sides of 67.28 K at an electric current value of 1.8 A,whereas the Rect-leg,Pin-leg and X-leg generated~66.25,~67.02 and~67.19 K at 6.1,2.7 and 2.6 A. 展开更多
关键词 solar thermoelectric generators heat loss thermoelectric coolers coefficient of performance leg geometry same leg volume PERFORMANCE
原文传递
Segmented thermoelectric generator modelling and optimization using artificial neural networks by iterative training
9
作者 Yuxiao Zhu Daniel W.Newbrook +3 位作者 Peng Dai Jian Liu C.H.Kees de Groot Ruomeng Huang 《Energy and AI》 2023年第2期76-85,共10页
Renewable energy technologies are central to emissions reduction and essential to achieve net-zero emission.Segmented thermoelectric generators(STEG)facilitate more efficient thermal energy recovery over a large tempe... Renewable energy technologies are central to emissions reduction and essential to achieve net-zero emission.Segmented thermoelectric generators(STEG)facilitate more efficient thermal energy recovery over a large temperature gradient.However,the additional design complexity has introduced challenges in the modelling and optimization of its performance.In this work,an artificial neural network(ANN)has been applied to build accurate and fast forward modelling of the STEG.More importantly,we adopt an iterative method in the ANN training process to improve accuracy without increasing the dataset size.This approach strengthens the proportion of the high-power performance in the STEG training dataset.Without increasing the size of the training dataset,the relative prediction error over high-power STEG designs decreases from 0.06 to 0.02,representing a threefold improvement.Coupling with a genetic algorithm,the trained artificial neural networks can perform design optimization within 10 s for each operating condition.It is over 5,000 times faster than the optimization performed by the conventional finite element method.Such an accurate and fast modeller also allows mapping of the STEG power against different parameters.The modelling approach demonstrated in this work indicates its future application in designing and optimizing complex energy harvesting technologies. 展开更多
关键词 Segmented thermoelectric generator Artificial neural network Genetic algorithm Optimization Iterative training
原文传递
A Novel Design of Thermoelectric Generator for Automotive Waste Heat Recovery 被引量:3
10
作者 Kuo Huang Yuying Yan +3 位作者 Bo Li Yong Li Kai Li Jun Li 《Automotive Innovation》 EI 2018年第1期54-61,共8页
With progressively stringent fuel consumption regulations,many researchers and engineers are focusing on the employment of waste heat recovery technologies for automotive applications.Regarded as a promising method of... With progressively stringent fuel consumption regulations,many researchers and engineers are focusing on the employment of waste heat recovery technologies for automotive applications.Regarded as a promising method of waste heat recovery,the thermoelectric generator(TEG)has been given increasing attention over the whole automotive industry for the last decade.In this study,we first give a brief review of improvements in thermoelectric materials and heat exchangers for TEG systems.We then present a novel design for a concentric cylindrical TEG system that addresses the existing weaknesses of the heat exchanger.In place of the typical square-shaped thermoelectric module,our proposed concentric cylindrical TEG system uses an annular thermoelectric module and employs the advantages of the heat pipe to enhance the heat transfer in the radial direction.The simulations we carried out to verify the performance of the proposed system showed better power output among the existing TEG system,and a comparison of water-inside and gas-inside arrangements showed that the water-inside concentric cylindrical TEG system produced a higher power output. 展开更多
关键词 Wasteheatrecovery thermoelectric generator Heat pipe Heat transferenhancement Numerical simulation
原文传递
Effect of non-uniform illumination on performance of solar thermoelectric generators 被引量:1
11
作者 Ershuai YIN Qiang LI Yimin XUAN 《Frontiers in Energy》 SCIE CSCD 2018年第2期239-248,共10页
Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar... Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar thermoelectric generators. In this paper, a three- dimensional finite element model of solar thermoelectric generators is established. The two-dimensional Gaussian distribution is employed to modify the illumination profiles incident on the thermoelectric generator. Six non-uniformities of solar illumination are investigated while keeping the total energy constant. The influences of non-uniform illumination on the temperature distribution, the voltage distribution, and the maximum output power are respectively discussed. Three thermoelectric generators with 32, 18 and 8 pairs of thermocouples are compared to investigate their capability under non-uniform solar radiation. The result shows that the non-uniformity of the solar illumination has a great effect on the temperature distribution and the voltage distribution. Central thermoelectric legs can achieve a larger temperature difference and generate a larger voltage than peripheral ones. The non-uniform solar illumination will weaken the capability of the TE generator, and the maximum output power decrease by 1.4% among the range of non-uniformity studied in this paper. Reducing the number of the thermoelectric legs for non-uniform solar illumination can greatly increase the performance of the thermoelectric generator. 展开更多
关键词 solar thermoelectric generators non-uniform solar illumination performance evaluation solar energy
原文传递
A thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon photovoltaic system 被引量:1
12
作者 Zekun LIU Shuang YUAN +2 位作者 Yi YUAN Guojian LI Qiang WANG 《Frontiers in Energy》 SCIE CSCD 2021年第2期358-366,共9页
Solar energy has been increasing its share in the global energy structure. However, the thermal radiation brought by sunlight will attenuate the efficiency of solar cells. To reduce the temperature of the photovoltaic... Solar energy has been increasing its share in the global energy structure. However, the thermal radiation brought by sunlight will attenuate the efficiency of solar cells. To reduce the temperature of the photovoltaic (PV) cell and improve the utilization efficiency of solar energy, a hybrid system composed of the PV cell, a thermoelectric generator (TEG), and a water-cooled plate (WCP) was manufactured. The WCP cannot only cool the PV cell, but also effectively generate additional electric energy with the TEG using the waste heat of the PV cell. The changes in the efficiency and power density of the hybrid system were obtained by real time monitoring. The thermal and electrical tests were performed at different irradiations and the same experiment temperature of 22°C. At a light intensity of 1000 W/m2, the steady-state temperature of the PV cell decreases from 86.8°C to 54.1°C, and the overall efficiency increases from 15.6% to 21.1%. At a light intensity of 800 W/m2, the steady-state temperature of the PV cell decreases from 70°C to 45.8°C, and the overall efficiency increases from 9.28% to 12.59%. At a light intensity of 400 W/m2, the steady-state temperature of the PV cell decreases from 38.5°C to 31.5°C, and the overall efficiency is approximately 3.8%, basically remain unchanged. 展开更多
关键词 photovoltaic(PV) thermoelectric generator conversion efficiency hybrid energy systems water-cooled plate(WCP)
原文传递
Thermoelectric generator based on anisotropic wood aerogel for low-grade heat energy harvesting
13
作者 Xuan Zhao Zehong Chen +8 位作者 Hao Zhuo Yijie Hu Ge Shi Bing Wang Haihong Lai Sherif Araby Wenjia Han Xinwen Peng Linxin Zhong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第25期150-158,共9页
Thermoelectric generators(TEGs)have received increasing attention due to their potential to harvest low-grade heat energy(<100℃ )and provide power for the Internet of Things(IoT)and wearable electronic devices.Her... Thermoelectric generators(TEGs)have received increasing attention due to their potential to harvest low-grade heat energy(<100℃ )and provide power for the Internet of Things(IoT)and wearable electronic devices.Herein,a wood-based ordered framework is used to fabricate carbon nanotube/poly(3,4-ethylenedioxythiophene)(CNT/PEDOT)wood aerogel for TEG.The prepared CNT/PEDOT wood aerogel with an anisotropic structure exhibits a low thermal conductivity of 0.17 W m^(−1)K^(−1)and is advantageous to develop a sufficient temperature gradient.Meanwhile,CNT/PEDOT composites effectively decouple the relationship between the Seebeck coefficient and electrical conductivity by energy filtering effect to enhance thermoelectric(TE)output properties.The vertical TEG assembled by the CNT/PEDOT wood aerogels reveals an output power of 1.5μW and a mass-specific power of 15.48μW g^(−1)at a temperature difference of 39.4 K.Moreover,the layered structure renders high compressibility and fatigue resistance.The anisotropic structure,high mechanical performance,and rapid thermoelectric response,enabling the TEG based on CNT/PEDOT wood aerogel offer opportunities for continuous power supply to low-power electronic devices. 展开更多
关键词 WOOD Nano cellulose Energy harvesting Wearable devices thermoelectric generator
原文传递
Natural Gas Pressure Reduction Station Self-powered by Fire Thermoelectric Generator
14
作者 WANG Yupeng TONG Xiao +2 位作者 WANG Hongmei QIU Junfeng SHEN Limei 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第3期840-853,共14页
Pressure reduction station(PRS)is an essential facility in natural gas transmission,which owns the function of pressure reduction,demand-supply management and flow metering.However,a large number of PRSs are located i... Pressure reduction station(PRS)is an essential facility in natural gas transmission,which owns the function of pressure reduction,demand-supply management and flow metering.However,a large number of PRSs are located in off-grid areas and powered by battery equipment resulting in high maintenance costs.So,how to realize the energy independence of these PRSs is an urgent issue to be solved.Therefore,the natural gas fired thermoelectric generation(FTEG)module,including gas flue,cover,TEGs and heat radiators,is designed for PRS in off-grid areas.Phase change material is introduced into the FTEG module to change the operation mode from continuous mode into a periodic mode,and the prototype of the FTEG module is built to discuss the generation performance in different modes.The results show that the generation efficiency of the FTEG module is improved by 63%in periodic mode compared with the continuous mode.Then,the numerical model is established to investigate the impacts of air coefficient,cold-side heat radiator and number of TEGs on the module performance.It found that the impacts of cold-side heat radiator and the number of TEGs are more significant than those of the air coefficient.After adjusting these key parameters,an optimized FTEG module with 32 TEGs is proposed,which has an average power generation of 16.4 W and a heat collection efficiency of 84.6%.Eventually,3 to 6 modules can be connected in series to meet the power requirement of 50 W to 100 W for PRS.This high-performance FTEG module can accelerate the process of achieving the energy independence of PRS and promote its application in mesoscale equipment. 展开更多
关键词 pressure reduction station natural gas thermoelectric generator phase change material periodic mode
原文传递
Electricity Generation from Heatwaves
15
作者 Diandong Ren Mervyn J. Lynch 《International Journal of Geosciences》 CAS 2024年第5期449-457,共9页
We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequ... We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves. 展开更多
关键词 Heatwaves Climate Warming Clean Energy Generation by thermoelectric generator Ameliorate and Transcend Heatwaves Climate Warming Mitigation and Adaptation thermoelectric generator (TEG) IR Interaction with Periodically Arranged Nanostructures Optical Properties of Nano Fabricating Passive Clean Energy Tapping/Generation
下载PDF
Optimal Control of Hybrid Photovoltaic-Thermometric Generator System Using GEPSO
16
作者 Maryam Ejaz 《Journal of Power and Energy Engineering》 2022年第3期1-21,共21页
Recently the concern about energy consumption across the globe has become more severe due to global warming. One essential way to address this problem is to maximize the efficiency of existing renewable energy resourc... Recently the concern about energy consumption across the globe has become more severe due to global warming. One essential way to address this problem is to maximize the efficiency of existing renewable energy resources and effectively eliminate their power losses. The previous studies on energy harvesting of photovoltaic (PV) modules try to cope with this problem using gradient-based control techniques and pay little attention to the significant loss of solar energy in the form of waste heat. To reconcile these waste-heat problems, this paper investigates hybrid photovoltaic-thermoelectric generation (PV-TEG) systems. We implement the generalized particle swarm optimization (GEPSO) technique to maximize the power of PV systems under dynamic conditions by utilizing the waste heat to produce electricity through embedding the thermoelectric generator (TEG) with the PV module. The removal of waste heat increases the efficiency of PV systems and also adds significant electrical power. As a control method, the proposed GEPSO can maximize the output power. Simulations confirm that GEPSO outperforms some state-of-the-art methods, e.g., the perturb and observe (PO), cuckoo search (CS), incremental conductance (INC), and particle swarm optimization (PSO), in terms of accuracy and tracking speed. 展开更多
关键词 thermoelectric generator (TEG) PV System Maximum Power Point Tracking (MPPT) Photovoltaic (PV) Generalized Particle Swarm Optimization (GEPSO) Energy Harvesting
下载PDF
State-of-the-art review of MPPT techniques for hybrid PV-TEG systems:modeling,methodologies,and perspectives
17
作者 Bo Yang Rui Xie +1 位作者 Jinhang Duan Jingbo Wang 《Global Energy Interconnection》 EI CSCD 2023年第5期567-591,共25页
The development of alternative renewable energy technologies is crucial for alleviating climate change and promoting energy transformation.Of the currently available technologies,solar energy has promising application... The development of alternative renewable energy technologies is crucial for alleviating climate change and promoting energy transformation.Of the currently available technologies,solar energy has promising application prospects owing to its merits of being clean,safe,and sustainable.Solar energy is converted into electricity through photovoltaic(PV)cells;however,the overall conversion efficiency of PV modules is relatively low,and most of the captured solar energy is dissipated in the form of heat.This not only reduces the power generation efficiency of solar cells but may also have a negative impact on the electrical parameters of PV modules and the service life of PV cells.To overcome the shortcomings,an efficient approach involves combining a PV cell with a thermoelectric generator(TEG)to form hybrid PV-TEG systems,which simultaneously improve the energy conversion efficiency of the PV system by reducing the operating temperature of the PV modules and increasing the power output by utilizing the waste heat generated from the PV system to generate electricity via the TEGs.Based on a thorough examination of the literature,this study comprehensively reviews 14 maximum power point tracking(MPPT)algorithms currently applied to hybrid PV-TEG systems and classifies them into five major categories for further discussion,namely conventional,mathematics-based,metaheuristic,artificial intelligence,and other algorithms.This review aims to inspire advanced ideas and research on MPPT algorithms for hybrid PV-TEG systems. 展开更多
关键词 PHOTOVOLTAIC thermoelectric generator Hybrid PV-TEG MPPT Partial shading condition
下载PDF
Maximum Power Extraction Control Algorithm for Hybrid Renewable Energy System
18
作者 N.Kanagaraj Mohammed Al-Ansi 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期769-784,共16页
In this research,a modified fractional order proportional integral derivate(FOPID)control method is proposed for the photovoltaic(PV)and thermoelectric generator(TEG)combined hybrid renewable energy system.The faster ... In this research,a modified fractional order proportional integral derivate(FOPID)control method is proposed for the photovoltaic(PV)and thermoelectric generator(TEG)combined hybrid renewable energy system.The faster tracking and steady-state output are aimed at the suggested maximum power point tracking(MPPT)control technique.The derivative order number(μ)value in the improved FOPID(also known as PIλDμ)control structure will be dynamically updated utilizing the value of change in PV array voltage output.During the transient,the value ofμis changeable;it’s one at the start and after reaching the maximum power point(MPP),allowing for strong tracking characteristics.TEG will use the freely available waste thermal energy created surrounding the PVarray for additional power generation,increasing the system’s energy conversion efficiency.A high-gain DC-DC converter circuit is included in the system to maintain a high amplitude DC input voltage to the inverter circuit.The proposed approach’s performance was investigated using an extensive MATLAB software simulation and validated by comparing findings with the perturbation and observation(P&O)type MPPT control method.The study results demonstrate that the FOPID controller-based MPPT control outperforms the P&O method in harvesting the maximum power achievable from the PV-TEG hybrid source.There is also a better control action and a faster response. 展开更多
关键词 Fractional order PID controller MPPT boost converter PV array thermoelectric generator hybrid renewable energy system
下载PDF
Enhanced Perturb and Observe Control Algorithm for a Standalone Domestic Renewable Energy System
19
作者 N.Kanagaraj Obaid Martha Aldosary +1 位作者 M.Ramasamy M.Vijayakumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2291-2306,共16页
The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energ... The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energy of an electric water heater(EWH)to generate electricity independently.To improve the energy conversion efficiency of the TEG,a fuzzy logic con-troller(FLC)-based perturb&observe(P&O)type maximum power point tracking(MPPT)control algorithm is used in this study.An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers.Also,a significant amount of thermal energy generated by EWH is wasted every day,especially during the winter season.In recent years,TEGs have been widely developed to convert surplus or unused thermal energy into usable electricity.In this context,the proposed model is designed to use the thermal energy stored in the EWH to generate electricity.In addition,the generated electricity can be easily stored in a battery storage system to supply electricity to various household appliances with low-power-consumption.The proposed MPPT control algorithm helps the system to quickly reach the optimal point corresponding to the maximum power output and maintains the system operating point at the maximum power output level.To validate the usefulness of the proposed scheme,a study model was developed in the MATLAB Simulink environment and its performance was investigated by simulation under steady state and transient conditions.The results of the study confirmed that the system is capable of generating adequate power from the available thermal energy of EWH.It was also found that the output power and efficiency of the system can be improved by maintaining a higher temperature difference at the input terminals of the TEG.Moreover,the real-time temperature data of Abha city in Saudi Arabia is considered to analyze the feasibility of the proposed system for practical implementation. 展开更多
关键词 Perturb and observe control algorithm fuzzy logic controller energy conversion efficiency maximum power point tracking thermoelectric generator
下载PDF
Solar cell-based hybrid energy harvesters towards sustainability
20
作者 Tianxiao Xiao Suo Tu +3 位作者 Suzhe Liang Renjun Guo Ting Tian Peter Müller-Buschbaum 《Opto-Electronic Science》 2023年第6期1-21,共21页
Energy harvesting plays a crucial role in modern society.In the past years,solar energy,owing to its renewable,green,and infinite attributes,has attracted increasing attention across a broad range of applications from... Energy harvesting plays a crucial role in modern society.In the past years,solar energy,owing to its renewable,green,and infinite attributes,has attracted increasing attention across a broad range of applications from small-scale wearable electronics to large-scale energy powering.However,the utility of solar cells in providing a stable power supply for vari-ous electrical appliances in practical applications is restricted by weather conditions.To address this issue,researchers have made many efforts to integrate solar cells with other types of energy harvesters,thus developing hybrid energy har-vesters(HEHs),which can harvest energy from the ambient environment via different working mechanisms.In this re-view,four categories of energy harvesters including solar cells,triboelectric nanogenerators(TENGs),piezoelectric nanogenerators(PENGs),and thermoelectric generators(TEGs)are introduced.In addition,we systematically summar-ize the recent progress in solar cell-based hybrid energy harvesters(SCHEHs)with a focus on their structure designs and the corresponding applications.Three hybridization designs through unique combinations of TENG,PENG,and TEG with solar cells are elaborated in detail.Finally,the main challenges and perspectives for the future development of SCHEHs are discussed. 展开更多
关键词 solar cell hybrid energy harvesters triboelectric nanogenerators piezoelectric nanogenerators thermoelectric generators
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部