期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electrodeposition and characterization of thermoelectric Bi_2Se_3 thin films 被引量:2
1
作者 Xiao-long Li Ke-feng Cai Hui Li Ling Wang Chi-wei Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第1期104-107,共4页
Bi2Se3 thin films were electrochemically deposited on Ti and indium tin oxide-coated glass substrates, respectively, at room temperature, using Bi(NO3)3·5H2O and SeO2 as starting materials in diluted HNO3 solut... Bi2Se3 thin films were electrochemically deposited on Ti and indium tin oxide-coated glass substrates, respectively, at room temperature, using Bi(NO3)3·5H2O and SeO2 as starting materials in diluted HNO3 solution. A conventional three-electrode cell was used with a platinum sheet as a counter electrode, and a saturated calomel electrode was used as a reference electrode. The films were annealed in argon atmosphere. The influence of cold isostatic pressing before annealing on the microstructure and thermoelectric properties of the films was investigated. X-ray diffraction analysis indicates that the film grown on the indium tin oxide-coated glass substrate is pure rhombohedral Bi2Se3, and the film grown on the Ti substrate consists of both rhombohedral and orthorhombic Bi2Se3. 展开更多
关键词 thermoelectric thin films bismuth selenide ELECTRODEPOSITION thermoelectric properties cold isostafic pressing
下载PDF
Effects of Thickness and Temperature on Thermoelectric Properties of Bi2Te3-Based Thin Films 被引量:1
2
作者 杨冬冬 童浩 +1 位作者 周凌珺 缪向水 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第12期65-69,共5页
Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices of different thicknesses are prepared on the silicon dioxide substrates by magnetron sputtering technique and thermally annealed at 573 K for 30 min. Thermoelectric... Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices of different thicknesses are prepared on the silicon dioxide substrates by magnetron sputtering technique and thermally annealed at 573 K for 30 min. Thermoelectric(TE)measurements indicate that optimal thickness and thickness ratio improve the TE performance of Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices, respectively. High TE performances with figure-of-merit(ZT) values as high as 1.32 and 1.56 are achieved at 443 K for 30 nm and 50 nm Bi_2Te_3 thin films, respectively. These ZT values are higher than those of p-type Bi_2Te_3 alloys as reported. Relatively high ZT of the GeTe/B_2Te_3 superlattices at 300-380 K were 0.62-0.76. The achieved high ZT value may be attributed to the unique nano-and microstructures of the films,which increase phonon scattering and reduce thermal conductivity. The results indicate that Bi_2Te_3-based thin films can serve as high-performance materials for applications in TE devices. 展开更多
关键词 Te Effects of Thickness and Temperature on thermoelectric Properties of Bi2Te3-Based thin films Bi
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部