期刊文献+
共找到754篇文章
< 1 2 38 >
每页显示 20 50 100
Ga intercalation in van der Waals layers for advancing p-type Bi_(2)Te_(3)-based thermoelectrics 被引量:1
1
作者 陈艺源 石青 +5 位作者 钟艳 李瑞恒 林黎蔚 任丁 刘波 昂然 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期510-516,共7页
Tetradymite-structured chalcogenides,such as Bi_(2)Te_(3) and Sb_(2)Te_(3),are quasi-two-dimensional(2D)layered compounds,which are significant thermoelectric materials applied near room temperature.The intercalation ... Tetradymite-structured chalcogenides,such as Bi_(2)Te_(3) and Sb_(2)Te_(3),are quasi-two-dimensional(2D)layered compounds,which are significant thermoelectric materials applied near room temperature.The intercalation of guest species in van der Waals(vdW)gap implemented for tunning properties has attracted much attention in recent years.We attempt to insert Ga atoms in the vdW gap between the Te layers in p-type Bi_(0.3)Sb_(1.7)Te_(3)(BST)for further improving thermoelectrics.The vdW-related defects(including extrinsic interstitial and intrinsic defects)induced by Ga intercalation can not only modulate the carrier concentration but also enhance the texture,thereby yielding excellent electrical properties,which are reflected in the power factor PF~4.43 mW·m^(-1)·K^(-2).Furthermore,the intercalation of Ga produces multi-scale lattice imperfections such as point defects,Te precipitations,and nanopores,realizing the low lattice thermal conductivity in BST-Ga samples.Ultimately,a peak zT~1.1 at 373 K is achieved in the BST-1%Ga sample and greatly improved by~22%compared to the pristine BST.The weak bonding of vdW interlayer interaction can boost the synergistic effect for advancing BST-based or other layered thermoelectrics. 展开更多
关键词 THERMOELECTRICITY p-type(Bi Sb)_2Te_(3) van der Waals gap defects texture alignment
下载PDF
Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe_(2) alloys
2
作者 王亚东 张富界 +5 位作者 饶旭日 冯皓然 林黎蔚 任丁 刘波 昂然 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期598-604,共7页
AgCrSe2-based compounds have attracted much attention as an environmentally friendly thermoelectric material in recent years due to the intriguing liquid-like properties.However,the ultra-low carrier concentration and... AgCrSe2-based compounds have attracted much attention as an environmentally friendly thermoelectric material in recent years due to the intriguing liquid-like properties.However,the ultra-low carrier concentration and the high Ag_(Cr)deep-level defects limit the overall thermoelectric performance.Here,we successfully introduced Pb into Ag-deficient Ag_(0.97)CrSe_(2) alloys to tune the carrier concentration across a broad temperature range.The Pb^(2+) as an acceptor dopant preferentially occupies Cr sites,boosting the hole carrier concentration to 1.77×10^(19) cm^(-3) at room temperature.Furthermore,the Pb strongly inhibits the creation of intrinsic Ag_(Cr) defects,weakens the increased thermal excited ionization with the increasing temperature and slowed the rising trend of the carrier concentration.The designed carrier concentration matches the theoretically predicted optimized one over the entire temperature range,leading to a remarkable enhancement in power factor,especially the maximum power factor of ~500 μW·m^(-1)·K^(-2) at 750 K is superior to most previous results.Additionally,the abundant point defects promote phonon scattering,thus reducing the lattice thermal conductivity.As a result,the maximum figure of merit zT(~0.51 at 750 K) is achieved in Ag_(0.97)Cr_(0.995)Pb_(0.005)Se_(2).This work confirms the feasibility of manipulating deep-level defects to achieve temperature-dependent optimal carrier concentration and provides a valuable guidance for other thermoelectric materials. 展开更多
关键词 AgCrSe2 deep-level defects carrier concentration modulation thermoelectric properties
下载PDF
Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer(GaN)_(1-x)(ZnO)_(x)
3
作者 梁汉普 段益峰 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期461-468,共8页
Nonisovalent(GaN)_(1-x)(ZnO)_(x)alloys are more technologically promising than their binary counterparts because of the abruptly reduced band gap.Unfortunately,the lack of two-dimensional(2D)configurations as well as ... Nonisovalent(GaN)_(1-x)(ZnO)_(x)alloys are more technologically promising than their binary counterparts because of the abruptly reduced band gap.Unfortunately,the lack of two-dimensional(2D)configurations as well as complete stoichiometries hinders to further explore the thermal transport,thermoelectrics,and adsorption/permeation.We identify that multilayer(GaN)_(1-x)(ZnO)_(x)stabilize as wurtzite-like Pm-(GaN)_(3)(ZnO)_(1),Pmc2_(1)-(Ga N)_(1)(ZnO)_(1),P3m1-(GaN)_(1)(ZnO)_(2),and haeckelite C2/m-(GaN)_(1)(ZnO)_(3)via structural searches.P3m1-(GaN)_(1)(ZnO)_(2)shares the excellent thermoelectrics with the figure of merit ZT as high as 3.08 at 900 K for the p-type doping due to the ultralow lattice thermal conductivity,which mainly arises from the strong anharmonicity by the interlayer asymmetrical charge distributions.The p–d coupling is prohibited from the group theory in C2/m-(Ga N)_(1)(ZnO)_(3),which thereby results in the anomalous band structure versus Zn O composition.To unveil the adsorption/permeation of H^(+),Na^(+),and OH^(-)ions in AA-stacking configurations,the potential wells and barriers are explored from the Coulomb interaction and the ionic size.Our work is helpful in experimental fabrication of novel optoelectronic and thermoelectric devices by 2D(GaN)_(1-x)(ZnO)_(x)alloys. 展开更多
关键词 thermal transport ANHARMONICITY THERMOELECTRICITY nonisovalent alloys
下载PDF
The Quantum Chemistry Calculation and Thermoelectricsof Bi-Sb-Te Series
4
作者 闵新民 HONGHan-lie ANJi-ming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第2期6-9,共4页
The density junction theory and discrete variation method ( DFT - DVM) was used to study correlation between composition, structure, chemical bond, and property of thermoelectrics of Bi-Sb-Te series. 8 models of Bi20-... The density junction theory and discrete variation method ( DFT - DVM) was used to study correlation between composition, structure, chemical bond, and property of thermoelectrics of Bi-Sb-Te series. 8 models of Bi20-xSbxTe32(x = 0,2,6,8,12,14,18 and 20) were calculated. The results show that there is less difference in the ionic bonds between Te( I)-Bi(Sb) and Te(Ⅱ)-Bi(Sb) , but the covalent bond of Te(Ⅰ)-Bi( Sb ) is stronger than that of Te(Ⅱ)-Bi( Sb ) . The interaction between Te(Ⅰ) and Te(Ⅰ) in different layers is the weakest and the interaction should be Van Der Wools power. The charge of Sb is lower than that of Bi, and the ionic bond of Te-Sb is weaker than that of Te-Bi. The covalent bond of Te-Sb is also weaker than that of Te-Bi. Therefore, the thermoelectric property may be imfiroved by adjusting the electrical conductivity and thermal conductivity through changing the composition in the compounds of Bi-Sb-Te. The calculated results are consistent with the experiments. 展开更多
关键词 bismuth telluride THERMOELECTRIC structure and property quantum chemistry calculation
下载PDF
Revolution in thermoelectric cooling using PbSe thermoelectrics by grid plainification
5
作者 Xiao-Lei Shi Qingfeng Liu Zhi-Gang Chen 《Science China Materials》 SCIE EI CAS CSCD 2024年第5期1672-1673,共2页
Thermoelectric materials and devices enable direct conversion between heat and electricity,holding potential applications in thermoelectric power generation,localized cooling,and electronic thermal management[1].Howev... Thermoelectric materials and devices enable direct conversion between heat and electricity,holding potential applications in thermoelectric power generation,localized cooling,and electronic thermal management[1].However,despite widespread applications,thermoelectric technology remains constrained by material performance[2]. 展开更多
关键词 enable THERMOELECTRIC CONSTRAINED
原文传递
Close-packed layer spacing as a practical guideline for structure symmetry manipulation of IV-VI/I-V-VI_(2) thermoelectrics
6
作者 Tao Jin Long Yang +2 位作者 Xinyue Zhang Wen Li Yanzhong Pei 《InfoMat》 SCIE CSCD 2024年第2期99-106,共8页
The crystal-structure symmetry in real space can be inherited in the reciprocal space,making high-symmetry materials the top candidates for thermoelectrics due to their potential for significant electronic band degene... The crystal-structure symmetry in real space can be inherited in the reciprocal space,making high-symmetry materials the top candidates for thermoelectrics due to their potential for significant electronic band degeneracy.A practical indicator that can quantitatively describe structural changes would help facilitate the advanced thermoelectric material design.In face-centered cubic structures,the spatial environment of the same crystallographic plane family is isotropic,such that the distances between the close-packed layers can be derived from the atomic distances within the layers.Inspired by this,the relationship between inter-and intra-layer geometric information can be used to compare crystal structures with their desired cubic symmetry.The close-packed layer spacing was found to be a practical guideline of crystal structure symmetry in IV-VI chalcogenides and I-V-VI_(2) ternary semiconductors,both of which are historically important thermoelectrics.The continuous structural evolution toward high symmetry can be described by the layer spacing when temperature or/and composition change,which is demonstrated by a series of pristine and alloyed thermoelectric materials in this work.The layerspacing-based guideline provides a quantitative pathway for manipulating crystal structures to improve the electrical and thermal properties of thermoelectric materials. 展开更多
关键词 phase transition structure manipulation thermoelectric materials x-ray diffraction
原文传递
Weavable thermoelectrics: advances, controversies, and future developments
7
作者 Xiao-Lei Shi Shuai Sun +4 位作者 Ting Wu Jian Tu Zhiming Zhou Qingfeng Liu Zhi-Gang Chen 《Materials Futures》 2024年第1期63-94,共32页
Owing to the capability of the conversion between thermal energy and electrical energy and their advantages of light weight,compactness,noise-free operation,and precision reliability,wearable thermoelectrics show grea... Owing to the capability of the conversion between thermal energy and electrical energy and their advantages of light weight,compactness,noise-free operation,and precision reliability,wearable thermoelectrics show great potential for diverse applications.Among them,weavable thermoelectrics,a subclass with inherent flexibility,wearability,and operability,find utility in harnessing waste heat from irregular heat sources.Given the rapid advancements in this field,a timely review is essential to consolidate the progress and challenge.Here,we provide an overview of the state of weavable thermoelectric materials and devices in wearable smart textiles,encompassing mechanisms,materials,fabrications,device structures,and applications from recent advancements,challenges,and prospects.This review can serve as a valuable reference for researchers in the field of flexible wearable thermoelectric materials and devices and their applications. 展开更多
关键词 THERMOELECTRIC WEAVING materials structure DEVICE
原文传递
Origin of off-centering effect and the influence on heat transport in thermoelectrics
8
作者 Hongyao Xie Li-Dong Zhao 《Materials Futures》 2024年第1期142-149,共8页
Recently,off-centering behavior has been discovered in a series of thermoelectric materials.This behavior indicates that the constituent atoms of the lattice displace from their coordination centers,leading to the loc... Recently,off-centering behavior has been discovered in a series of thermoelectric materials.This behavior indicates that the constituent atoms of the lattice displace from their coordination centers,leading to the locally distorted state and local symmetry breaking,while the material still retains its original crystallographic symmetry.This effect has been proved to be the root cause of ultralow thermal conductivity in off-centering materials,and is considered as an effective tool to regulate the thermal conductivity and improve the thermoelectric performance.Herein,we present a collection of recently discovered off-centering compounds,discuss their electronic origins and local coordination structures,and illuminate the underlying mechanism of the off-centering effect on phonon transport and thermal conductivity.This paper presents a comprehensive view of our current understanding to the off-centering effect,and provides a new idea for designing high performance thermoelectrics. 展开更多
关键词 THERMOELECTRIC thermal conductivity off-centering behavior acoustic-optical phonon scattering
原文传递
Harness High-Temperature Thermal Energy via Elastic Thermoelectric Aerogels
9
作者 Hongxiong Li Zhaofu Ding +5 位作者 Quan Zhou Jun Chen Zhuoxin Liu Chunyu Du Lirong Liang Guangming Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期196-210,共15页
Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature moni... Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare. 展开更多
关键词 thermoelectrics AEROGEL SELF-POWERED High-temperature monitoring High-temperature warning
下载PDF
Rational design and synthesis of Cr_(1-x)Te/Ag_(2)Te composites for solid-state thermoelectromagnetic cooling near room temperature
10
作者 孙笑晨 谢承昊 +3 位作者 陈思汗 万京伟 谭刚健 唐新峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期580-586,共7页
Materials with both large magnetocaloric response and high thermoelectric performance are of vital importance for all-solid-state thermoelectromagnetic cooling.These two properties,however,hardly coexist in single pha... Materials with both large magnetocaloric response and high thermoelectric performance are of vital importance for all-solid-state thermoelectromagnetic cooling.These two properties,however,hardly coexist in single phase materials except previously reported hexagonal Cr_(1-x)Te half metal where a relatively high magnetic entropy change(-△S_(M))of~2.4 J·kg^(-1)·K^(-1)@5 T and a moderate thermoelectric figure of merit(ZT)of~1.2×10^(-2)@300 K are simultaneously recorded.Herein we aim to increase the thermoelectric performance of Cr_(1-x)Te by compositing with semiconducting Ag_(2)Te.It is discovered that the in-situ synthesis of Cr_(1-x)Te/Ag_(2)Te composites by reacting their constitute elements above melting temperatures is unsuccessful because of strong phase competition.Specifically,at elevated temperatures(T>800 K),Cr_(1-x)Te has a much lower deformation energy than Ag_(2)Te and tends to become more Cr-deficient by capturing Te from Ag_(2)Te.Therefore,Ag is insufficiently reacted and as a metal it deteriorates ZT.We then rationalize the synthesis of Cr_(1-x)Te/Ag_(2)Te composites by ex-situ mix of the pre-prepared Cr_(1-x)Te and Ag_(2)Te binary compounds followed by densification at a low sintering temperature of 573 K under a pressure of 3.5 GPa.We show that by compositing with 7 mol%Ag_(2)Te,the Seebeck coefficient of Cr_(1-x)Te is largely increased while the lattice thermal conductivity is considerably reduced,leading to 72%improvement of ZT.By comparison,-△S_(M)is only slightly reduced by 10%in the composite.Our work demonstrates the potential of Cr_(1-x)Te/Ag_(2)Te composites for thermoelectromagnetic cooling. 展开更多
关键词 thermoelectromagnetic cooling thermoelectric MAGNETOCALORIC composite chromium telluride
下载PDF
Effect of Molecular Weight on Thermoelectric Performance of P3HT Analogues with 2-Propoxyethyl Side Chains
11
作者 董得福 WANG Wei +3 位作者 ZHAN Chun LI Chenglong ZHOU Qisheng 肖生强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期268-281,共14页
By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared h... By replacing hexyl chains in poly(3-hexylthiophene)(P3HT)with 2-propoxyethyls,four poly(3-(2-propoxyethyl)thiophene)(P3POET)homopolymers with comparable polydispersity indexes(PDI)and regioregularities were prepared herein in addition with step increment of about 7 kDa on numberaverage molecular weight(M_(n))from around 11 to 32 kDa(accordingly denoted as P11k,P18k,P25k,and P32k).When doped in film by FeCl_(3)at the optimized conditions,the maximum power factor(PF_(max))increases greatly from 4.3μW·m^(-1)·K^(-2)for P11k to 8.8μW·m^(-1)·K^(-2)for P18k,and further to 9.7μW·m^(-1)·K^(-2)for P25k,followed by a slight decrease to 9.2μW·m^(-1)·K^(-2)for P32k.The close Seebeck coefficients(S)at PF_(max)are observed in these doped polymer films due to their consistent frontier orbital energy levels and Fermi levels.The main contribution to this PF_(max)evolution thus comes from the corresponding conductivities(σ).Theσvariation of the doped films can be rationally correlated with their microstructure evolution. 展开更多
关键词 conjugated polymer molecular weight MICROSTRUCTURE thermoelectric performance
下载PDF
Solvation Engineering via Fluorosurfactant Additive Toward Boosted Lithium-Ion Thermoelectrochemical Cells
12
作者 Yinghong Xu Zhiwei Li +2 位作者 Langyuan Wu Hui Dou Xiaogang Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期253-268,共16页
Lithium-ion thermoelectrochemical cell(LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat... Lithium-ion thermoelectrochemical cell(LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat-to-current behavior limit the application of LTECs using LiPF_6 electrolyte. Introducing additives into bulk electrolyte is a reasonable strategy to solve such problem by modifying the solvation structure of electrolyte ions. In this work, we develop a dual-salt electrolyte with fluorosurfactant(FS) additive to achieve high thermopower and durability of LTECs during the conversion of low-grade heat into electricity. The addition of FS induces a unique Li~+ solvation with the aggregated double anions through a crowded electrolyte environment,resulting in an enhanced mobility kinetics of Li~+ as well as boosted thermoelectrochemical performances. By coupling optimized electrolyte with graphite electrode, a high thermopower of 13.8 mV K^(-1) and a normalized output power density of 3.99 mW m^(–2) K^(–2) as well as an outstanding output energy density of 607.96 J m^(-2) can be obtained.These results demonstrate that the optimization of electrolyte by regulating solvation structure will inject new vitality into the construction of thermoelectrochemical devices with attractive properties. 展开更多
关键词 Solvation engineering FLUOROSURFACTANT Ionic thermoelectric Lithium-ion thermoelectrochemical cell Low-grade heat
下载PDF
Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires
13
作者 聂祎楠 唐桂华 +2 位作者 李一斐 张敏 赵欣 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期86-94,共9页
Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-d... Zinc oxide(ZnO)shows great potential in electronics,but its large intrinsic thermal conductivity limits its thermoelectric applications.In this work,we explore the significant carrier transport capacity and diameter-dependent thermoelectric characteristics of wurtzite-ZnO(0001)nanowires based on first-principles and molecular dynamics simulations.Under the synergistic effect of band degeneracy and weak phonon-electron scattering,P-type(ZnO)_(73) nanowires achieve an ultrahigh power factor above 1500μW·cm^(-1)·K^(-2)over a wide temperature range.The lattice thermal conductivity and carrier transport properties of ZnO nanowires exhibit a strong diameter size dependence.When the ZnO nanowire diameter exceeds 12.72A,the carrier transport properties increase significantly,while the thermal conductivity shows a slight increase with the diameter size,resulting in a ZT value of up to 6.4 at 700 K for P-type(ZnO)_(73).For the first time,the size effect is also illustrated by introducing two geometrical configurations of the ZnO nanowires.This work theoretically depicts the size optimization strategy for the thermoelectric conversion of ZnO nanowires. 展开更多
关键词 ZnO nanowire size effect thermoelectric performance deformation potential theory
下载PDF
High-entropy alloys in thermoelectric application:A selective review
14
作者 任凯 霍文燚 +3 位作者 陈帅 程渊 王彪 张刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期1-11,共11页
Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the ... Since the superior mechanical,chemical and physical properties of high-entropy alloys(HEAs)were discovered,they have gradually become new emerging candidates for renewable energy applications.This review presents the novel applications of HEAs in thermoelectric energy conversion.Firstly,the basic concepts and structural properties of HEAs are introduced.Then,we discuss a number of promising thermoelectric materials based on HEAs.Finally,the conclusion and outlook are presented.This article presents an advanced understanding of the thermoelectric properties of HEAs,which provides new opportunities for promoting their applications in renewable energy. 展开更多
关键词 high-entropy alloys thermoelectric materials thermal conduction
下载PDF
On-Chip Micro Temperature Controllers Based on Freestanding Thermoelectric Nano Films for Low-Power Electronics
15
作者 Qun Jin Tianxiao Guo +4 位作者 Nicolas Perez Nianjun Yang Xin Jiang Kornelius Nielsch Heiko Reith 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期98-108,共11页
Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ... Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics. 展开更多
关键词 Temperature control Low-power electronics On-chip micro temperature controller Freestanding thermoelectric nano films Temperature-sensitive components
下载PDF
Frictional contact analysis of a rigid solid with periodic surface sliding on the thermoelectric material
16
作者 Yali ZHANG Yueting ZHOU Shenghu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期179-196,共18页
Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical... Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical systems.The sliding friction contact problem between a thermoelectric(TE)half-plane and a rigid solid with a periodic wavy surface is the focus of this investigation.To simplify the problem,we utilize mixed boundary conditions,leading to a set of singular integral equations(SIEs)with the Hilbert kernels.The analytical solutions for the energy flux and electric current density are obtained by the variable transform method in the context of the electric and temperature field.The contact problem for the elastic field is transformed into the second-kind SIE and solved by the Jacobi polynomials.Notably,the smoothness of the wavy contact surface ensures that there are no singularities in the surface contact stress,and ensures that it remains free at the contact edge.Based on the plane strain theory of elasticity,the analysis primarily examines the correlation between the applied load and the effective contact area.The distribution of the normal stress on the surface with or without TE loads is discussed in detail for various friction coefficients.Furthermore,the obtained results indicate that the in-plane stress decreases behind the trailing edge,while it increases ahead of the trailing edge when subjected to TE loads. 展开更多
关键词 wavy surface periodic contact thermoelectric(TE)material Hilbert integral kernel
下载PDF
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency
17
作者 Yahui Liu Shunda Qiao +4 位作者 Chao Fang Ying He Haiyue Sun Jian Liu Yufei Ma 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第3期26-34,共9页
A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manu... A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF. 展开更多
关键词 light-induced thermoelectric spectroscopy quartz tuning fork multi-pass cell gas sensing
下载PDF
Electricity Generation from Heatwaves
18
作者 Diandong Ren Mervyn J. Lynch 《International Journal of Geosciences》 CAS 2024年第5期449-457,共9页
We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequ... We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves. 展开更多
关键词 Heatwaves Climate Warming Clean Energy Generation by Thermoelectric Generator Ameliorate and Transcend Heatwaves Climate Warming Mitigation and Adaptation Thermoelectric Generator (TEG) IR Interaction with Periodically Arranged Nanostructures Optical Properties of Nano Fabricating Passive Clean Energy Tapping/Generation
下载PDF
Investigating the Potential of Quasi-One-Dimensional Organic Crystals of TTT(TCNQ)2 for Thermoelectric Applications
19
作者 Silvia Andronic Ionel Sanduleac 《Advances in Materials Physics and Chemistry》 CAS 2024年第1期1-14,共14页
The purpose of this paper is to present the results of investigations on quasi-one-dimensional organic crystals of tetrathiotetracene-tetracyanoquinodi- methane (TTT(TCNQ)<sub>2</sub>) from the prospective... The purpose of this paper is to present the results of investigations on quasi-one-dimensional organic crystals of tetrathiotetracene-tetracyanoquinodi- methane (TTT(TCNQ)<sub>2</sub>) from the prospective of thermoelectric applications. The calculations were performed after analytical expressions, obtained in the frame of a physical model, more detailed than the model presented earlier by authors. The main Hamiltonian of the model includes the electronic and phonon part, electron-phonon interactions and the impurity scattering term. In order to estimate the electric charge transport between the molecular chains, the physical model was upgraded to the so-called three-dimen- sional (3D) physical model. Numeric computations were performed to determine the electrical conductivity, Seebeck coefficient, thermal conductivity, thermoelectric power factor and thermoelectric figure-of-merit as a function on charge carrier concentrations, temperatures and impurity concentrations. A detailed analysis of charge-lattice interaction, consisting of the exploration of the Peierls structural transition in TCNQ molecular chains of TTT(TCNQ)<sub>2</sub> was performed. As result, the critical transition temperature was determined. The dispersion of renormalized phonons was examined in detail. 展开更多
关键词 Organic Materials Tetrathiotetracene-Tetracyanoquinodimethane Thermoelectric Figure of Merit Renormalized Phonon Spectrum Peierls Tran-sition
下载PDF
Boosting thermoelectrics by alloying Cu_(2)Se in SnTe-CdTe compounds
20
作者 Zhiyu Chen Juan Li +4 位作者 Jing Tang Fujie Zhang Yan Zhong Hangtian Liu Ran Ang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第30期45-51,共7页
The discovery of band convergence has opened an effective avenue for significantly enhancing thermoelectric performance of SnTe,while alloying CdTe in SnTe is evidenced efficient for improving the valley degeneracy.Ho... The discovery of band convergence has opened an effective avenue for significantly enhancing thermoelectric performance of SnTe,while alloying CdTe in SnTe is evidenced efficient for improving the valley degeneracy.However,the thermoelectric transport properties are limited due to the low solubility of CdTe in SnTe(~3%).Inspired by the improvement of dimensionless figure of merit zT in Cu or Se-doped SnTe,investigating the effect of Cu_(2)Se on the electronic and phonon transport properties of SnTe-CdTe alloys is highly desired.Traditionally,improving the quality factor can trigger an increase of the potential of a compound for higher zT,which is of importance for design of thermoelectric materials.Here,alloyed 3%Cu_(2)Se in SnTe-3%CdTe system enables an increased peak zT,which is attributed by the optimization of electronic performance(~21μW cm^(-1)K^(-2)at 800 K),as well as the decreased lattice thermal conductivity owing to the enhanced mass and strain fluctuations.More importantly,alloying Cu_(2)Se not only improves the quality factor from~0.25 to~0.45,resulting in a higher maximum potential zT,but also effectively preserves the Fermi energy in a relative optimized level.The current findings demonstrate the role of Cu_(2)Se for manipulating thermoelectrics in SnTe. 展开更多
关键词 SnTe thermoelectrics Quality factor Fermi level
原文传递
上一页 1 2 38 下一页 到第
使用帮助 返回顶部