期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
Pyrolysis and combustion kinetics of lycopodium particles in thermogravimetric analysis 被引量:1
1
作者 Seyed Alireza Mostafavi Sadjad Salavati +1 位作者 Hossein Beidaghy Dizaji Mehdi Bidabadi 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3409-3417,共9页
Biomass is a kind of renewable energy which is used increasingly in different types of combustion systems or in the production of fuels like bio-oil. Lycopodium is a cellulosic particle, with good combustion propertie... Biomass is a kind of renewable energy which is used increasingly in different types of combustion systems or in the production of fuels like bio-oil. Lycopodium is a cellulosic particle, with good combustion properties, of which microscopic images show that these particles have spherical shapes with identical diameters of 31 μm. The measured density of these particles is 1.0779 g/cm2. Lycopodium particles contain 64.06% carbon, 25.56% oxygen, 8.55% hydrogen and 1.83% nitrogen, and no sulfur. Thermogravimetric analysis in the nitrogen environment indicates that the maximum of particle mass reduction occurs in the temperature range of 250-550 ℃ where the maximum mass reduction in the DTG diagrams also occurs in. In the oxygen environment, an additional peak can also be observed in the temperature range of 500-600 ℃, which points to solid phase combustion and ignition temperature of lycopodium particles. The kinetics of reactions is determined by curve fitting and minimization of error. 展开更多
关键词 lycopodium dust particles thermogravimetric analysis PYROLYSIS COMBUSTION ignition temperature chemical kinetics
下载PDF
Evaluation of oxygen uncoupling characteristics of oxygen carrier using micro-fluidized bed thermogravimetric analysis 被引量:1
2
作者 Lei Liu Zhenshan Li +1 位作者 Ye Li Ningsheng Cai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期408-415,共8页
Oxygen uncoupling characteristics of a natural manganese ore and a perovskitetype oxide CaMn_(0.5)Ti0_(37)5Fe_(0.125)O_(3)were studied by using a microfluidized bed thermogravimetric analysis(MFBTGA)technology which i... Oxygen uncoupling characteristics of a natural manganese ore and a perovskitetype oxide CaMn_(0.5)Ti0_(37)5Fe_(0.125)O_(3)were studied by using a microfluidized bed thermogravimetric analysis(MFBTGA)technology which is based on a realtime mass measurement of fluidizing particles inside a bubbling bed reactor.The chemical stability,kinetics of the oxygen release and uptake reactions and fluidization property were investigated and the experimental data measured by MFBTGA were compared with the results in a regular TGA instrument(TGA Q500).The regular TGA Q500 results show the reactivity of both the manganese ore and perovskite oxide are stable for multi cycles,and the oxygen uncoupling capacity of the manganese ore is~1.2%(mass)which is~2 times higher than that of the perovskite oxide.However,the experimental results from the MFBTGA indicated that there is a serious agglomeration for the manganese ore.A very important finding is that the reaction rate of oxygen release and oxygen uptake of the perovskite oxide measured by the MFBTGA are~2 and~4 times faster than that of testedby the TGA Q500.We can conclude that MFBTGA is a very useful tool to measure the reactivity stability and kinetics of oxygen carriers in highthroughput analysis instead of the regular TGA. 展开更多
关键词 CO_(2)capture Oxygen carrier Oxygen uncoupling FLUIDIZED-BED thermogravimetric analysis AGGLOMERATION
下载PDF
Use of Thermogravimetric Analysis for Moisture Determination in Difficult Lyophilized Biological Samples
3
作者 Paul Matejtschuk Chinwe Duru +4 位作者 Kiran Malik Ernest Ezeajughi Elaine Gray Sanj Raut Fatme Mawas 《American Journal of Analytical Chemistry》 2016年第3期260-265,共6页
Residual moisture is a key quality control parameter for lyophilized biologicals, as high moisture can correlate with poor stability. Coulometric Karl Fischer titration is the most widely used technology to determine ... Residual moisture is a key quality control parameter for lyophilized biologicals, as high moisture can correlate with poor stability. Coulometric Karl Fischer titration is the most widely used technology to determine residual water content;some chemicals are known to cause problems with Karl Fischer titration, but these chemicals do not usually occur in biologics. Three biological samples, of fibrinogen, heparin and Haemophilus influenza b polysaccharide, have caused particular issue in our hands by routine Karl Fischer analysis, illustrating different limitations with this method. The use of thermogravimetric analysis, with evolved gas mass spectrometric monitoring, is described here as a successful alternative for moisture analysis in these materials. 展开更多
关键词 thermogravimetric analysis Freeze Dried Moisture Determination Karl Fischer Titration
下载PDF
Matrix-Material Fabrication Technique and Thermogravimetric Analysis of Banana Fiber Reinforced Polypropylene Composites
4
作者 Nazrul Islam M.A Gafur 《Journal of Building Material Science》 2023年第2期15-24,共10页
From the environmental consideration,it would be very interesting to use natural fibers such as banana,jute or coir as reinforcement materials instead of artificial fibers or any kind of synthetic materials.Natural fi... From the environmental consideration,it would be very interesting to use natural fibers such as banana,jute or coir as reinforcement materials instead of artificial fibers or any kind of synthetic materials.Natural fibers have many advantages over synthetic ones.Polypropylene banana fiber composites(PPBC)are prepared using untreated and alkali-treated banana fibers at 10-25%by weight of the fiber loading.The thermal properties of polypropylene natural fiber composites are very important for technological uses.Thermogravimetric measurements show that the incorporation of banana fiber into PP enhances the thermal stability of composites containing treated fibers,in comparison with untreated fibers.A composite of biodegradable polypropylene(PP)reinforced with short banana natural fibers was prepared by melt blending followed by a hot press molding system.The thermal properties of matrix materials were studied using thermogravimetric analyzers TGA units.It is observed that the introduction of short banana fibers slightly improved the thermo oxidative stability of PP-banana composites.Physical and chemical changes occurred through dehydration,phase transition,molecular orientation,crystallinity disruption,oxidation and decomposition,and incorporation of several functional groups.Systematic investigations of the thermal behavior of polymers in gas,vacuum or inert atmosphere give the knowledge of how change takes place in polymers.To understand such changes thermogravimetric analysis(TGA)and thermal analysis(TG)were performed.It is observed reinforcement of short banana fiber leads to little improvement in the thermooxidative stability of PPBC.Due to the enhancement of thermo-mechanical properties,such composites may be used as building materials namely roof materials,selling materials and many other engineering applications. 展开更多
关键词 Polypropylene banana composites(PPBC) Natural fiber Oxidative stability thermogravimetric analysis(TGA) DECOMPOSITION
下载PDF
Characterization by Thermogravimetric Analysis of Polymeric Concrete with High Density Polyethylene Mechanically Recycled
5
作者 Alma Delia Rodriguez Martinez Martha Lilia Dominguez Patino +1 位作者 Rosa Maria Melgoza Aleman Gerardo Antonio Rosas Trejo 《Journal of Minerals and Materials Characterization and Engineering》 2014年第4期259-263,共5页
This paper presents the results of the characterization by thermogravimetric analysis of a new composite material called polymeric concrete. The polymeric concrete contains micro-particles obtained from High Density P... This paper presents the results of the characterization by thermogravimetric analysis of a new composite material called polymeric concrete. The polymeric concrete contains micro-particles obtained from High Density Poly-Ethylene (HDPE) mechanically recycled (post-consumer bottles);the official Mexican standard NMX-E-232-SCFI-1999 considers the HDPE as the recyclable plastic material. Thermo-grams based on weight lost were obtained from the raw material (HDPE) and the polymer concrete in order to obtain the glass transition temperature (Tg) and melting temperature (Tf). The analysis conditions were defined from 20°C to 180°C and the heat rate of 1°C/minute. The results show that the glass transition temperature of polymeric concrete is 46°C and the HDPE is 38°C. These results mean that the polymeric concrete is more resistant to decomposition. With respect to the melting temperature, the results show that the 2°C difference between polymeric concrete and HDPE is not significant. The polymeric concrete with HDPE recycled can be considered as composite material thermoplastic. The new material melts when it is heated to 146°C and has the ability to be softened, processed and reprocessed with temperature and pressure changes, which make it possible to obtain molded pieces in the desired shape. 展开更多
关键词 Polymer Concrete High Density Poly-Ethylene thermogravimetric analysis
下载PDF
Thermogravimetric Analysis of Coal Char Combustion Kinetics 被引量:4
6
作者 Guang-wei WANG Jian-liang ZHANG +2 位作者 Jiu-gang SHAO Hui SUN Hai-bin ZUO 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第10期897-904,共8页
Four chars prepared from pulverized coals were subjected to non-isothermal and isothermal combustion tests in a thermogravimetric analysis (TGA) device. Three different test methods, i. e. , non-isothermal single he... Four chars prepared from pulverized coals were subjected to non-isothermal and isothermal combustion tests in a thermogravimetric analysis (TGA) device. Three different test methods, i. e. , non-isothermal single heat- ing rate (A), non-isothermal multiple heating rate (B), and isothermal test (C), were conducted to calculate the ki- netic parameters of combustion of coal char. The results show that the combustion characteristics of bituminous coal char is better than that of anthracite char, and both increase of heating rate and increase of combustion temperature can obviously improve combustion characteristics of coal char. Activation energies of coal char combustion calculated by different methods are different, with activation energies calculated by methods A, B and C in the range of 103.12-- 153.77, 93.87--119.26, and 46.48--76.68 kJ/mol, respectively. By using different methods, activation energy of anthracite char is always higher than that of bituminous coal char. In non-isothermal tests, with increase of combus- tion temperature, the combustion process changed from kinetic control to diffusion control. For isothermal combus- tion, the combustion process was kinetically controlled at temperature lower than 580 ℃ for bituminous coal char and at temperature lower than 630 ℃ for anthracite char. 展开更多
关键词 coal char COMBUSTION thermogravimetric analysis KINETICS
原文传递
Investigating the co-combustion characteristics of oily sludge and ginkgo leaves through thermogravimetric analysis coupled with an artificial neural network 被引量:1
7
作者 LI ShuChen NIU ShengLi +3 位作者 HAN KuiHua LI YingJie WANG YongZheng LU ChunMei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第2期261-271,共11页
The co-combustion characteristics of oily sludge and ginkgo leaves(GL) in an oxy-fuel atmosphere are investigated via thermogravimetric analysis coupled with an artificial neural network. The combustion characteristic... The co-combustion characteristics of oily sludge and ginkgo leaves(GL) in an oxy-fuel atmosphere are investigated via thermogravimetric analysis coupled with an artificial neural network. The combustion characteristics of blends improve as the GL mass ratio increases. The interaction indices used to evaluate the interaction between the two solid combustibles present a complex nonlinear relationship in different stages. The Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose methods are used to calculate the activation energy of the blends, which increases with an increase in the oxygen concentration, in different atmospheres. Compared with the radial basis function, the backpropagation neural network performs better in predicting the combustion curve of the blends. 展开更多
关键词 oily sludge CO-COMBUSTION oxy-fuel atmosphere thermogravimetric analysis artificial neural network
原文传递
Combustion Property and Kinetic Modeling of Pulverized Coal Based on Non-isothermal Thermogravimetric Analysis 被引量:1
8
作者 Jiu-gang SHAO Jian-liang ZHANG +2 位作者 Guang-wei WANG Zhe WANG Hong-wei GUO 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第11期1002-1008,共7页
Non-isothermal combustion kinetics of two kinds of low volatile pulverized coals (HL coal and RU coal) were investigated by thermogravimetrie analysis. The results show that the combustibility of HL coal was better ... Non-isothermal combustion kinetics of two kinds of low volatile pulverized coals (HL coal and RU coal) were investigated by thermogravimetrie analysis. The results show that the combustibility of HL coal was better than that of RU coal, and with increasing heating rate, ignition and burnout characteristics of pulverized coal were improved. The volume model (VM), the random pore model (RPM), and the new model (NEWM) in which the whole combustion process is considered to be the overlapping process of volatile combustion and coal char combustion, were used to fit with the experimental data. The comparison of these three fitted results indicated that the combustion process of coal could be simulated by the NEWM with highest precision. When calculated by the NEWM, the activation energies of volatile combustion and coal char combustion are 130.5 and 95.7 kJ · mol^-1 for HL coal, respectively, while they are 114.5 and 147.6 kJ ·mol^-1 for RU coal, respectively. 展开更多
关键词 pulverized coal COMBUSTION kinetic model non-isothermal thermogravimetric analysis
原文传递
Understanding the behavior of recycled aggregate concrete by using thermogravimetric analysis
9
作者 Subhasis PRADHAN Shailendra KUMAR Sudhirkumar V.BARAI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第6期1561-1572,共12页
The physio-chemical changes in concrete mixes due to different coarse aggregate(natural coarse aggregate and recycled coarse aggregate(RCA))and mix design methods(conventional method and Particle Packing Method(PPM))a... The physio-chemical changes in concrete mixes due to different coarse aggregate(natural coarse aggregate and recycled coarse aggregate(RCA))and mix design methods(conventional method and Particle Packing Method(PPM))are studied using thermogravimetric analysis of the bydrated cement paste.A method is proposed to estimate the degree of hydration(a)from chemically bound water(WB).The PPM mix designed concrete mixes exhibit lower a.Recycled aggregate concrete(RAC)mixes exhibit higher and a after 7 d of curing,contrary to that after 28 and 90 d.The chemically bound water at infinite time(WBo)of RAC mixes are lower than the respective conventional concrete mixes.The lower WBo,Ca(OH)2 bound water,free Ca(OH)2 content and FT-IR analysis substantiate the use of pozzolanic cement in the parent concrete of RCA.The compressive strength of concrete and a cannot be correlated for concrete mixes with different aggregate type and mix design method as the present study confirms that the degree of hydration is not the only parameter which governs the macro-mechanical properties of concrete.In this regard,further study on the influence of interfacial transition zone,voids content and aggregate quality on macro-mechanical properties of concrete is needed. 展开更多
关键词 recycled aggregate concrete Paricle Packing Method thermogravimetric analysis chemically bound water degree of hydration Fourier transform infrared spectroscopy
原文传递
Thermogravimetric analysis of bamboo-tar under different heating rates based on distributed activation energy model
10
作者 Huan Zhang Beibei Yan +4 位作者 Tingzhou Lei Tao Liu Jianjun Hu Yameng Li Guanyi Chen 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第6期180-186,共7页
Carbon fiber is a kind of new polymer material with excellent mechanical properties and being applied widely.The process of carbon fiber prepared by bamboo tar,including extraction,condensation,spinning,oxidation and ... Carbon fiber is a kind of new polymer material with excellent mechanical properties and being applied widely.The process of carbon fiber prepared by bamboo tar,including extraction,condensation,spinning,oxidation and carbonation,is influenced by the pyrolysis kinetics significantly.In this paper,the thermogravimetric analysis(TGA)of bamboo tar produced in the process of pyrolysis and gasification of the bamboo which is known as Phylostachys sulphurea,was analyzed by the distributed activation energy model(DAEM)to understand the kinetic properties and parameters of bamboo tar.The thermogravimetric analysis of bamboo tar which is used as the raw material of carbon fiber was conducted under 5 different heating rates(i.e.5,10,15,30 and 50℃/min,etc.)in nitrogen atmosphere.The results show that the activation energy of bamboo tar and the exponential factor increased significantly with the increase of the heating rate,and the low heating rate is advantageous to the extraction of bamboo tar solvent and the thermal polycondensation,which can provide scientific reference for the optimization of carbon fiber technology.The thermal weight results show that the temperature range of bamboo tar being decomposed rapidly is 213℃-410℃.The ranges of the activation energy were calculated by DAEM,which have small difference in comparisons with five heating rates when the conversion rate is at 0.1-0.6 and the average value of the activation energy is 119 kJ/mol.The stability range of the activation energy is enlarged when the conversion rate is greater than 0.6 and heating rate increases. 展开更多
关键词 bamboo tar carbon fiber thermogravimetric analysis(TGA) distributed activation energy model(DAEM)
原文传递
Spontaneous combustion liability between coal seams: A thermogravimetric study 被引量:7
11
作者 Moshood Onifade Bekir Genc Samson Bada 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期691-698,共8页
The spontaneous combustion liability of coal can be determined by using different experimental techniques.These techniques are well-known in their application,but no certain test method has become a standard to prove ... The spontaneous combustion liability of coal can be determined by using different experimental techniques.These techniques are well-known in their application,but no certain test method has become a standard to prove the reliability of all of them.A general characterisation which included proximate and ultimate analyses,petrographic properties and spontaneous combustion tests(thermogravimetric analysis(TGA)and the Wits-Ehac tests)were conducted on fourteen coal and four coal-shale samples.The spontaneous combustion liability of these samples collected between coal seams(above and below)were predicted using the TGA and the Wits-Ehac tests.Six different heating rates(3,6,9,15,20 and 25C/min)were selected based on the deviation coefficient to obtain different derivative slopes and a liability index termed the TGspc index.This study found that coal and coal-shale undergo spontaneous combustion between coal seams when exposed to oxygen in the air.Their intrinsic properties and proneness towards spontaneous combustion differ considerably from one seam to the other.The Wits-Ehac test results agreed with the TGspc results to a certain extent and revealed the incidents of spontaneous combustion in the coal mines. 展开更多
关键词 Crossing-point temperature thermogravimetric analysis Wits-Ehac index TGspc index
下载PDF
Thermogravimetric study of the effect of a PVA oxygen-insulating barrier on the spontaneous combustion of coal 被引量:5
12
作者 MENG Xianhang CHU Ruizhi +3 位作者 WU Guoguang XU Hongfeng ZHU Jiamei WANG Zhihua 《Mining Science and Technology》 EI CAS 2010年第6期882-885,共4页
Coal samples in the air for three months were characterized by Thermogravimetric Analysis (TGA). The effect of a PVA oxygen-insulating barrier on the spontaneous combustion of coal was examined. The moisture loss acti... Coal samples in the air for three months were characterized by Thermogravimetric Analysis (TGA). The effect of a PVA oxygen-insulating barrier on the spontaneous combustion of coal was examined. The moisture loss activation energy, oxidation activation energy and combustion activation energy were calculated by an integral method using the Coats-Redfen formula. The results show that the tendency for spontaneous combustion of three coal samples (judged by the activation energy) falls in the order: CYW>YJL>SW. The oxidation activation energy and combustion activation energy of coal protected by the PVA oxygen-insulating barrier increased. A significant increase in the combustion activation energy was noted, especially for the CYW coal where the in-crease was 28.53 kJ/mol. Hence, oxidation of the protected coal samples was more difficult. The PVA oxygen-insulating barrier helps to prevent spontaneous combustion of the coal. 展开更多
关键词 coal spontaneous combustion oxygen-insulating barrier activation energy thermogravimetric analysis
下载PDF
Pyrolytic and kinetic analysis of coastal plant Xanthium sibiricum
13
作者 王晓宁 朱立猛 +4 位作者 秦松 张亦陈 刘逸尘 孙金生 李莉莉 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2015年第1期135-138,共4页
The fuel properties of coastal plant Xanthium sibiricum were investigated in thermogravimetrics.The distributed activation energy model was employed in the kinetic analysis and a simplified mathematical model that can... The fuel properties of coastal plant Xanthium sibiricum were investigated in thermogravimetrics.The distributed activation energy model was employed in the kinetic analysis and a simplified mathematical model that can predict the thermogravimetry curves was proposed.The results show that the initial decomposition temperature tends to increase with the heating rate.The distributed E values ranged from 169.08 to 177.43 kJ/mol,and the frequency factor values ranged from 6.59× 10~8 to 1.22×10^(12)/s at different conversion rates.Furthermore,the prediction made with the simplified mathematical model perfectly matched the experimental data,and the model was found to be simple and accurate for the prediction of devolatilization curves. 展开更多
关键词 Xanthium sibiricum thermogravimetric analysis distributed activation energy model simplifiedmathematical model
下载PDF
Thermal decomposition analysis of coal-waste sludge and coal-sunflower seed husk blends
14
作者 王淑彦 李晓琦 +3 位作者 刘文铁 宋承毅 王春生 董群 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第5期641-646,共6页
The thermal decomposition analysis of coal-pharmaceutical waste sludge,coal-sewage waste sludge blends and coal-sunflower seed husk blends are studied by TG dynamic runs at the heating rate of 20 ℃/min within the tem... The thermal decomposition analysis of coal-pharmaceutical waste sludge,coal-sewage waste sludge blends and coal-sunflower seed husk blends are studied by TG dynamic runs at the heating rate of 20 ℃/min within the temperature range of 25 ℃-900 ℃.The effect of different kinetic models on the determination of kinetic parameters of thermal decomposition has been investigated.Results show that for coal-pharmaceutical sludge blend,coal-sewage sludge blend and coal-sunflower seed husk blend the optimal model functions are the three-dimensional diffusion reaction,2-dimensional and 3-diemensional nucleation and growth reactions,respectively.The Arrhenius kinetic parameters of the pre-exponential factor and activation energy of blends,as well waste sludge and sunflower seed husk only are proposed. 展开更多
关键词 PYROLYSIS coal-waste sludge blends thermogravimetric analysis model function kinetic parameters
下载PDF
Evaluating two stages of silicone-containing arylene resin oxidation via experiment and molecular simulation
15
作者 Jiangtao Cai Qingfu Huang +4 位作者 Huan Chen Tao Zhang Bo Niu Yayun Zhang Donghui Long 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期189-202,共14页
Silicon-containing aryl acetylene resin(PSA)is a new type of high-temperature resistant resin with excellent oxidation resistance,whereas antioxidant reaction mechanism of PSA resin under ultra-high temperatures still... Silicon-containing aryl acetylene resin(PSA)is a new type of high-temperature resistant resin with excellent oxidation resistance,whereas antioxidant reaction mechanism of PSA resin under ultra-high temperatures still remains unclear.Herein,the oxidation behavior and mechanisms of PSA resin are systematically investigated combining kinetic analysis and Reax FF molecular dynamics(MD)simulations.Thermogravimetric analysis indicates that the oxidation process of PSA resin undergoes two main steps:oxidative mass gain and oxidative degradation.The distributed activation energy model(DAEM)is employed for describing oxidation processes and the best-fit one is obtained using genetic algorithms and differential evolution.DAEM model demonstrates that the oxidative weight gain stage is dominated by two virtual reactants and the oxidative degradation stage consists of three virtual reactants.Correspondingly,the observation of MD reaction pathways indicates that oxygen oxidation of unsaturated structures occurs in the initial stage,which results in the formation of PSA resin oxides.Furthermore,cracked pieces react with O_(2)to generate CO and other chemicals in the second step.The resin matrix's great antioxidation resilience is illustrated by the formation of SiO_(2).The analysis based on MD simulations exhibits an efficient computational proof with the experiments and DAEM methods.Based on the results,a two-stage reaction mechanism is proposed,which provides important theoretical support for the subsequent study of the oxidation behavior of silica-based resins. 展开更多
关键词 PSA resin Oxidative degradation thermogravimetric analysis DAEM reaction kinetics ReaxFF simulation
下载PDF
Non-isothermal oxidation and ignition prediction of Ti-Cr alloys 被引量:6
16
作者 弭光宝 黄秀松 +3 位作者 李培杰 曹京霞 黄旭 曹春晓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2409-2415,共7页
The non-isothermal oxidation behavior and oxide scale microstructure of Ti-Cr alloy (0≤w(Cr)≤25%) were studied from room temperature to 1723 K by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and... The non-isothermal oxidation behavior and oxide scale microstructure of Ti-Cr alloy (0≤w(Cr)≤25%) were studied from room temperature to 1723 K by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influencing mechanism of chromium on the oxidation resistance of Ti-Cr alloys was discussed. The results show that the oxidation resistance of the alloys decreases with Cr below a critical chromium content wC and increases above wC; above 1000 K, the oxidation kinetics obeys parabolic rule and titanium dominates the oxidation process; after oxidation, the oxygen-diffusing layer is present in the alloy matrix, the oxide scale is mainly composed of rutile whose internal layer is rich in chromium, and chromium oxides separated out from TiO2 near the alloy-oxide interface improve the oxidation resistance. Ignition of metals and alloys is a fast non-isothermal oxidation process and the oxidation mechanism of Ti-Cr alloys during ignition is predicted. 展开更多
关键词 Ti-Cr alloy non-isothermal oxidation thermogravimetric analysis (TGA) oxide scale microstructure IGNITION
下载PDF
Assessment of the Stability of Cefazolin Sodium in Solids by TGA Decomposition Kinetics 被引量:2
17
作者 胡昌勤 张峰 +1 位作者 刘巍 金少鸿 《Journal of Chinese Pharmaceutical Sciences》 CAS 1998年第2期24-29,共6页
\ According to the analysis of the residual products by thermogravimetric analysis (TGA), the thermal decomposition process of cefazolin sodium (CEZ·Na) was thought to be similar to the degradation in solid sta... \ According to the analysis of the residual products by thermogravimetric analysis (TGA), the thermal decomposition process of cefazolin sodium (CEZ·Na) was thought to be similar to the degradation in solid state in its storage time. This laid a foundation for estimating the relative chemical stability of the drug by determination of its decomposition kinetics using TGA. Although the observed thermal decomposition kinetics of CEZ·Na was complex, a conversion level of 1% was chosen for evaluation of the stability of CEZ·Na crystalline since the mechanism here was more likely to be that of the actual product failure. The evaluation results suggested that the α form of CEZ·Na had the best stability and the amorphous one was the least stable one among α form, dehydrated α form and amorphous form. 展开更多
关键词 Cefazolin sodium CRYSTALLINE STABILITY Decomposition kinetics thermogravimetric analysis
全文增补中
Transformation of Flue-Gas-Desulfurization Gypsum to α-Hemihydrated Gypsum in Salt Solution at Atmospheric Pressure 被引量:18
18
作者 吴晓琴 童仕唐 +1 位作者 官宝红 吴忠标 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期349-355,共7页
Direct phase transformation of flue gas desulfurization gypsum in hot salt solution at atmospheric pres-sure was investigated.The effects of temperature,salt species,salt concentration,solids content,pH and modifier w... Direct phase transformation of flue gas desulfurization gypsum in hot salt solution at atmospheric pres-sure was investigated.The effects of temperature,salt species,salt concentration,solids content,pH and modifier were examined.The crystals obtained under different conditions and solubility of calcium sulfate in contact with solid gypsum were also determined.α-Calcium sulfate hemihydrate crystals of stubby columnar shape and regular pentahedral sides were obtained under the following conditions:salt concentration 20%-30%,operation tempera-ture 95-100 °C,solids mass content in the slurry 10%-30% and neutral pH.Thermodynamic analysis revealed that phase transformation of calcium sulfate dihydrate to α-calcium sulfate hemihydrate occurs because of the difference in solubilities between the two solid gypsum phases in this system. 展开更多
关键词 flue gas desulfurization gypsum crystal growth thermogravimetric analysis phase transformation
下载PDF
Granulation of filamentous microorganisms in a sequencing batch reactor with saline wastewater 被引量:11
19
作者 Zhihua Li Ting Zhang +1 位作者 Na Li Xiaochang Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第1期62-67,共6页
Proliferation of filamentous microorganisms frequently leads to operational failure for activate sludge systems. In this study, it was found that filamentous microorganisms could grow in compact granular structure wit... Proliferation of filamentous microorganisms frequently leads to operational failure for activate sludge systems. In this study, it was found that filamentous microorganisms could grow in compact granular structure with 5% sodium chloride in the substrate. In the early period of experiment, coccoid and rode-like bacteria predominated in the yellowish-brown granules, and later the white and the black granules were developed by filamentous microorganisms. The filamentous granules exhibited low porosity and fast settling velocity, and were more compact even than bacteria granules. It was hypothesized that the elevated pH in the later period might be a possible reason for the compact growth of filamentous granules. However, the bacteria granules showed the high bioactivity in terms of specific oxygen utilizing rate, and comprised of a wider diversity of compounds based on the thermogravimetric evaluation. The findings in this study demonstrated that filamentous microbes could form compact granular structure, which may encourage the utilization of filamentous microorganisms rather than the inhibition of their growth, as the latter is frequently used for sludge bulking control. 展开更多
关键词 aerobic granule sludge bulking filamentous microorganisms thermogravimetric analysis
下载PDF
Thermal decomposition and kinetics of plastic bonded explosives based on mixture of HMX and TATB with polymer matrices 被引量:11
20
作者 Arjun Singh Tirupati C.Sharma +3 位作者 Mahesh Kumar Jaspreet Kaur Narang Prateek Kishore Alok Srivastava 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第1期22-32,共11页
This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as poly... This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis(STA) and differential scanning calorimetry(DSC) to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis(TGA) indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn—Wall—Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS)methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition. 展开更多
关键词 Plastic bonded explosives thermogravimetric analysis Differential scanning calorimeter Thermal decomposition KINETICS
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部