Hundred years after the conjecture of the British astronomer Eddington that the sun is powered by nuclear fusion of hydrogen, new physics theory may help make energy harvesting by nuclear fusion soon a reality. Resear...Hundred years after the conjecture of the British astronomer Eddington that the sun is powered by nuclear fusion of hydrogen, new physics theory may help make energy harvesting by nuclear fusion soon a reality. Researchers as well as investors funding fusion megaprojects are asked to deal with new relativistic corrections for mass and energy proposed by Suleiman in his Information Relativity Theory (IRT). These corrections were calculated in this contribution. It will help to decide whether a venture will be successful and to save big investments when in doubt. The assumed optimal kinetic energy for controlled nuclear fusion must be corrected to a somewhat higher level. At very high kinetic energy in the upper GeV range, it remains not enough baryonic mass to be transformed in energy. The fusion probability faded out to zero already at the golden limit of the recession speed of between target nucleon and projectile nucleon. Cold nuclear fusion, if ever possible, is recommended for protons rather than deuterons at highest experimental possible temperatures around 1000 (K) and needs fine-tuned kinetic nucleon energy. It would be also of interest whether a golden ratio based nuclear fuel confinement chamber could be beneficial. In this connection, also cold nuclear fusion setups should be discussed. Nature is governed by the golden ratio and criticality of physical systems influenced by it, and nuclear physics is not an exception. Computer simulations of the underlying controlled nuclear fusion processes should gain profit from IRT corrected starting information and may tackle anew possible low energy nuclear transmutations considering the wave-like dark components of matter and energy.展开更多
An important task of world energy is to solve the problem of controlled thermonuclear fusion and the information presented in the article can be used in power engineering to create a controlled thermonuclear reactor. ...An important task of world energy is to solve the problem of controlled thermonuclear fusion and the information presented in the article can be used in power engineering to create a controlled thermonuclear reactor. The method now used magnetic localization of plasma does not allow sustaining stable thermonuclear plasma in a closed chamber, and so another solution to the problem is necessary. In this paper, we propose an alternative dynamic approach of the stationary localization of plasma through centrifugal force. Localization of plasma as plasma whirlwind allows us to control the process of stable thermonuclear fusion.展开更多
This report is a systematic and complemented summary of the earlier published works by the authors [1-4]. The concept of gravitational radiation as a radiation of one level with the electromagnetic radiation is based ...This report is a systematic and complemented summary of the earlier published works by the authors [1-4]. The concept of gravitational radiation as a radiation of one level with the electromagnetic radiation is based on theoretically proved and experimentally confirmed fact of existence of?electron’s stationary states in own gravitational field, characterized by gravitational constant K = 1042 G (G—Newtonian gravitational constant) and by irremovable space-time curvature. The received results strictly correspond to principles of the relativistic theory of gravitation and the quantum mechanics. The given work contributes into further elaboration of the findings considering their application to dense high-temperature plasma of multiple-charge ions. This is due to quantitative character of electron gravitational radiation spectrum such that amplification of gravitational radiation may take place only in multiple-charge ion high-temperature plasma.展开更多
文摘Hundred years after the conjecture of the British astronomer Eddington that the sun is powered by nuclear fusion of hydrogen, new physics theory may help make energy harvesting by nuclear fusion soon a reality. Researchers as well as investors funding fusion megaprojects are asked to deal with new relativistic corrections for mass and energy proposed by Suleiman in his Information Relativity Theory (IRT). These corrections were calculated in this contribution. It will help to decide whether a venture will be successful and to save big investments when in doubt. The assumed optimal kinetic energy for controlled nuclear fusion must be corrected to a somewhat higher level. At very high kinetic energy in the upper GeV range, it remains not enough baryonic mass to be transformed in energy. The fusion probability faded out to zero already at the golden limit of the recession speed of between target nucleon and projectile nucleon. Cold nuclear fusion, if ever possible, is recommended for protons rather than deuterons at highest experimental possible temperatures around 1000 (K) and needs fine-tuned kinetic nucleon energy. It would be also of interest whether a golden ratio based nuclear fuel confinement chamber could be beneficial. In this connection, also cold nuclear fusion setups should be discussed. Nature is governed by the golden ratio and criticality of physical systems influenced by it, and nuclear physics is not an exception. Computer simulations of the underlying controlled nuclear fusion processes should gain profit from IRT corrected starting information and may tackle anew possible low energy nuclear transmutations considering the wave-like dark components of matter and energy.
文摘An important task of world energy is to solve the problem of controlled thermonuclear fusion and the information presented in the article can be used in power engineering to create a controlled thermonuclear reactor. The method now used magnetic localization of plasma does not allow sustaining stable thermonuclear plasma in a closed chamber, and so another solution to the problem is necessary. In this paper, we propose an alternative dynamic approach of the stationary localization of plasma through centrifugal force. Localization of plasma as plasma whirlwind allows us to control the process of stable thermonuclear fusion.
文摘This report is a systematic and complemented summary of the earlier published works by the authors [1-4]. The concept of gravitational radiation as a radiation of one level with the electromagnetic radiation is based on theoretically proved and experimentally confirmed fact of existence of?electron’s stationary states in own gravitational field, characterized by gravitational constant K = 1042 G (G—Newtonian gravitational constant) and by irremovable space-time curvature. The received results strictly correspond to principles of the relativistic theory of gravitation and the quantum mechanics. The given work contributes into further elaboration of the findings considering their application to dense high-temperature plasma of multiple-charge ions. This is due to quantitative character of electron gravitational radiation spectrum such that amplification of gravitational radiation may take place only in multiple-charge ion high-temperature plasma.