The theory of two-temperature generalized thermoelasticity is used to solve the problem of heating a semi-infinite rod made of a piezoelectric ceramic material within the framework of generalized thermopiezoelasticity...The theory of two-temperature generalized thermoelasticity is used to solve the problem of heating a semi-infinite rod made of a piezoelectric ceramic material within the framework of generalized thermopiezoelasticity theory by supplying the rod a certain amount of heat uniformly distributed over a finite time period to the finite end of the rod. The Laplace transform formalism is used to solve the proposed model. Inverse Laplace transforms are computed numerically using a method based on Fourier expansion techniques. The physical parameters (i.e., conductive temperature, dynamical temperature, stress, strain, and displacement distributions) are investigated graphically.展开更多
文摘The theory of two-temperature generalized thermoelasticity is used to solve the problem of heating a semi-infinite rod made of a piezoelectric ceramic material within the framework of generalized thermopiezoelasticity theory by supplying the rod a certain amount of heat uniformly distributed over a finite time period to the finite end of the rod. The Laplace transform formalism is used to solve the proposed model. Inverse Laplace transforms are computed numerically using a method based on Fourier expansion techniques. The physical parameters (i.e., conductive temperature, dynamical temperature, stress, strain, and displacement distributions) are investigated graphically.