Geomagnetic storm events have a strong influence on the ionosphere–thermosphere(I-T)coupling system.Analyzing the regional response process of the I-T system and its differences across the northern and southern hemis...Geomagnetic storm events have a strong influence on the ionosphere–thermosphere(I-T)coupling system.Analyzing the regional response process of the I-T system and its differences across the northern and southern hemispheres is an important but challenging task.In this study,we used a combination of multiple observations and a model simulation to examine the north–south hemispheric difference in the I-T coupling system in the American and Asian sectors during the geomagnetic superstorm that occurred in May 2024.Observations of the total electron content(TEC)showed that the Asian sector had negative storms in the northern hemisphere and positive storms in the southern hemisphere,a process that exacerbated the hemispheric differences in the TEC.However,both hemispheres of the American sector showed negative storms.The thermospheric composition changes also differed between the two sectors,and their variation could partially explain the hemispheric differences caused by positive and negative storms.Moreover,the influence of the thermospheric density change was less than that of the thermospheric composition.Finally,the dynamic effect of the thermospheric wind and the plasma transport processes strongly modulated the north–south differences in the TEC at nighttime in the American and Asian sectors,respectively,during this superstorm.展开更多
Previous studies have proposed that both the thermospheric neutral wind and the equatorial electrojet(EEJ)near sunset play important roles in the pre-reversal enhancement(PRE)mechanism.In this study,we have used obser...Previous studies have proposed that both the thermospheric neutral wind and the equatorial electrojet(EEJ)near sunset play important roles in the pre-reversal enhancement(PRE)mechanism.In this study,we have used observations made in the equatorial region of Southeast Asia during March–April and September–October in 2010–2013 to investigate influences of the eastward neutral wind and the EEJ on the PRE’s strength.Our analysis employs data collected by the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE)satellite to determine the zonal(east-west direction)neutral wind at an altitude of~250 km(bottomside F region)at longitudes of 90°–130°E in the dusk sector.Three ionosondes,at Chumphon(dip lat.:3.0°N)in Thailand,at Bac Lieu(dip lat.:1.7°N)in Vietnam,and at Cebu(dip lat.:3.0°N)in Philippines,provided the data we have used to derive the PRE strength.Data from two magnetometers—at Phuket(dip lat.:0.1°S)in Thailand and at Kototabang(dip lat.:10.3°S)in Indonesia—were used to estimate the EEJ strength.Our study is focused particularly on days with magnetically quiet conditions.We have found that the eastward neutral wind and the EEJ are both closely correlated with the PRE;their cross-correlation coefficients with it are,respectively,0.42 and 0.47.Their relationship with each other is weaker:the cross-correlation coefficient between the eastward neutral wind and the EEJ is just 0.26.Our findings suggest that both the eastward neutral wind and the EEJ near sunset are involved in the PRE mechanism.Based on the weak relationship between these two parameters,however,they appear to be significantly independent of each other.Thus,the wind and the EEJ are likely to be influencing the PRE magnitude independently,their effects balancing each other.展开更多
The ionospheric responses to two strong storms on 17-19 August 2003 and 22-23 January 2004 are studied,using the data from Irkutsk(52.5°N,104°E) and Hainan(19.5°N,109°E) ionospheric stations.The an...The ionospheric responses to two strong storms on 17-19 August 2003 and 22-23 January 2004 are studied,using the data from Irkutsk(52.5°N,104°E) and Hainan(19.5°N,109°E) ionospheric stations.The analysis of variations in relative deviations of the critical frequency △f_0F_2 revealed that at middle latitudes(Irkutsk) negative disturbances were observed in the summer ionosphere; positive and negative ones,in the winter ionosphere during the main and recovery phases respectively.At low latitudes(Hainan),the disturbances were positive in all the cases considered. Mechanisms of the disturbances were analyzed with the aid of empirical models of the neutral atmosphere NRLMSISE-00 and thermospheric wind HWM07.The main factors determining △f_0F_2 variations at middle latitudes during the storms were demonstrated to be the disturbed equatorward thermospheric wind transporting the disturbed atmospheric composition,the increase in the atomic oxygen concentration,and the passage of internal gravity waves.At low latitudes,the effects associated with neutral composition variations are less significant than those of the thermospheric wind and electric fields.展开更多
Incoherent scatter radar (ISR) extra-wide coverage experiments during the period of 1978-2011 at Millstone Hill are used to investigate longitudinal differences in electron density. This work is motivated by a recen...Incoherent scatter radar (ISR) extra-wide coverage experiments during the period of 1978-2011 at Millstone Hill are used to investigate longitudinal differences in electron density. This work is motivated by a recent finding of the US east-west coast difference in TEC suggesting a combined effect of changing geomagnetic declination and zonal winds. The current study pro- vides strong supporting evidence of the longitudinal change and the plausible mechanism by examining the climatology of electron density Ne on both east and west sides of the radar with a longitude separation of up to 40% for different heights within 300-450 kin. Main findings include: 1) The east-west difference can be up to 60% and varies over the course of the day, being positive (East side Ne 〉 West side Ne) in the late evening, and negative (West side Ne 〉 East side Ne) in the pre-noon. 2) The east-west difference exists throughout the year. The positive (relative) difference is most pronounced in winter; the negative (relative) difference is most pronounced in early spring and later summer. 3) The east-west difference tends to enhance toward decreasing solar activity, however, with some seasonal dependence; the enhancements in the positive and negative differences do not take place simultaneously. 4) Both times of largest positive and largest negative east-west differences in Ne are earlier in summer and later in winter. The two times differ by 12-13 h, which remains constant throughout the year. 5) Variations at different heights from 300-450 km are similar. Zonal wind climatology above Millstone Hill is found to be perfectly consistent with what is expected based on the electron density difference between the east and west sides of the site. The magnetic declination-zonal wind mechanism is true for other longitude sectors as well, and may be used to understand longitudinal variations elsewhere. It may also be used to derive thermospheric zonal winds.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 42030202, 42241115, and 42174204)the China Postdoctoral Science Foundation (Grant No. 2023M743467)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. Y202021)the National Key R&D Program of China (Grant No. 2022YFF0504400)the Opening Funding of the Chinese Academy of Sciences dedicated to the Chinese Meridian Project
文摘Geomagnetic storm events have a strong influence on the ionosphere–thermosphere(I-T)coupling system.Analyzing the regional response process of the I-T system and its differences across the northern and southern hemispheres is an important but challenging task.In this study,we used a combination of multiple observations and a model simulation to examine the north–south hemispheric difference in the I-T coupling system in the American and Asian sectors during the geomagnetic superstorm that occurred in May 2024.Observations of the total electron content(TEC)showed that the Asian sector had negative storms in the northern hemisphere and positive storms in the southern hemisphere,a process that exacerbated the hemispheric differences in the TEC.However,both hemispheres of the American sector showed negative storms.The thermospheric composition changes also differed between the two sectors,and their variation could partially explain the hemispheric differences caused by positive and negative storms.Moreover,the influence of the thermospheric density change was less than that of the thermospheric composition.Finally,the dynamic effect of the thermospheric wind and the plasma transport processes strongly modulated the north–south differences in the TEC at nighttime in the American and Asian sectors,respectively,during this superstorm.
基金supported by the program of Follow-up Research Guidance of Japan Student Services Organization(JASSO)in 2019the Indonesian Ministry of Research and Technology and National Research and Innovative Agency(Kementerian RISTEK-BRIN)through the program of Pusat Unggulan Iptek(PUI)in 2019+4 种基金the Space Science Center of LAPAN through a research grant program in 2020support from JSPS KAKENHI Grants 18H01270,18H04446,and 17KK0095JRPs-LEAD with DFGpartially supported by JSPS KAKENHI Grant Number 20H00197supported by the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(grant number B05F630018)。
文摘Previous studies have proposed that both the thermospheric neutral wind and the equatorial electrojet(EEJ)near sunset play important roles in the pre-reversal enhancement(PRE)mechanism.In this study,we have used observations made in the equatorial region of Southeast Asia during March–April and September–October in 2010–2013 to investigate influences of the eastward neutral wind and the EEJ on the PRE’s strength.Our analysis employs data collected by the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE)satellite to determine the zonal(east-west direction)neutral wind at an altitude of~250 km(bottomside F region)at longitudes of 90°–130°E in the dusk sector.Three ionosondes,at Chumphon(dip lat.:3.0°N)in Thailand,at Bac Lieu(dip lat.:1.7°N)in Vietnam,and at Cebu(dip lat.:3.0°N)in Philippines,provided the data we have used to derive the PRE strength.Data from two magnetometers—at Phuket(dip lat.:0.1°S)in Thailand and at Kototabang(dip lat.:10.3°S)in Indonesia—were used to estimate the EEJ strength.Our study is focused particularly on days with magnetically quiet conditions.We have found that the eastward neutral wind and the EEJ are both closely correlated with the PRE;their cross-correlation coefficients with it are,respectively,0.42 and 0.47.Their relationship with each other is weaker:the cross-correlation coefficient between the eastward neutral wind and the EEJ is just 0.26.Our findings suggest that both the eastward neutral wind and the EEJ near sunset are involved in the PRE mechanism.Based on the weak relationship between these two parameters,however,they appear to be significantly independent of each other.Thus,the wind and the EEJ are likely to be influencing the PRE magnitude independently,their effects balancing each other.
基金Supported by the Russian Foundation for Basic Research(11-05-91153,11-05-00908)Program of the Division of EarthSciences,Russian Academy of Sciences(No.8)+1 种基金National Natural Science Foundation of China(41274146,41074114)the Specialized Research Fund for State Key Laboratory of China
文摘The ionospheric responses to two strong storms on 17-19 August 2003 and 22-23 January 2004 are studied,using the data from Irkutsk(52.5°N,104°E) and Hainan(19.5°N,109°E) ionospheric stations.The analysis of variations in relative deviations of the critical frequency △f_0F_2 revealed that at middle latitudes(Irkutsk) negative disturbances were observed in the summer ionosphere; positive and negative ones,in the winter ionosphere during the main and recovery phases respectively.At low latitudes(Hainan),the disturbances were positive in all the cases considered. Mechanisms of the disturbances were analyzed with the aid of empirical models of the neutral atmosphere NRLMSISE-00 and thermospheric wind HWM07.The main factors determining △f_0F_2 variations at middle latitudes during the storms were demonstrated to be the disturbed equatorward thermospheric wind transporting the disturbed atmospheric composition,the increase in the atomic oxygen concentration,and the passage of internal gravity waves.At low latitudes,the effects associated with neutral composition variations are less significant than those of the thermospheric wind and electric fields.
基金supported by the National Natural Science Foundation of China (Grant No. 40890164)the US National Science Foundation under Cooperative Agreements (Grant Nos. ATM-0733510 and ATM-6920184)
文摘Incoherent scatter radar (ISR) extra-wide coverage experiments during the period of 1978-2011 at Millstone Hill are used to investigate longitudinal differences in electron density. This work is motivated by a recent finding of the US east-west coast difference in TEC suggesting a combined effect of changing geomagnetic declination and zonal winds. The current study pro- vides strong supporting evidence of the longitudinal change and the plausible mechanism by examining the climatology of electron density Ne on both east and west sides of the radar with a longitude separation of up to 40% for different heights within 300-450 kin. Main findings include: 1) The east-west difference can be up to 60% and varies over the course of the day, being positive (East side Ne 〉 West side Ne) in the late evening, and negative (West side Ne 〉 East side Ne) in the pre-noon. 2) The east-west difference exists throughout the year. The positive (relative) difference is most pronounced in winter; the negative (relative) difference is most pronounced in early spring and later summer. 3) The east-west difference tends to enhance toward decreasing solar activity, however, with some seasonal dependence; the enhancements in the positive and negative differences do not take place simultaneously. 4) Both times of largest positive and largest negative east-west differences in Ne are earlier in summer and later in winter. The two times differ by 12-13 h, which remains constant throughout the year. 5) Variations at different heights from 300-450 km are similar. Zonal wind climatology above Millstone Hill is found to be perfectly consistent with what is expected based on the electron density difference between the east and west sides of the site. The magnetic declination-zonal wind mechanism is true for other longitude sectors as well, and may be used to understand longitudinal variations elsewhere. It may also be used to derive thermospheric zonal winds.