It is well known that smart thermostats (STs) have become key devices in the implementation of smart homes;thus, they are considered as primary elements for the control of electrical energy consumption in households. ...It is well known that smart thermostats (STs) have become key devices in the implementation of smart homes;thus, they are considered as primary elements for the control of electrical energy consumption in households. Moreover, energy consumption is drastically affected when the end users select unsuitable STs or when they do not use the STs correctly. Furthermore, in future, Mexico will face serious electrical energy challenges that can be considerably resolved if the end users operate the STs in a correct manner. Hence, it is important to carry out an in-depth study and analysis on thermostats, by focusing on social aspects that influence the technological use and performance of the thermostats. This paper proposes the use of a signal detection theory (SDT), fuzzy detection theory (FDT), and chi-square (CS) test in order to understand the perceptions and beliefs of end users about the use of STs in Mexico. This paper extensively shows the perceptions and beliefs about the selected thermostats in Mexico. Besides, it presents an in-depth discussion on the cognitive perceptions and beliefs of end users. Moreover, it shows why the expectations of the end users about STs are not met. It also promotes the technological and social development of STs such that they are relatively more accepted in complex electrical grids such as smart grids.展开更多
In order to study the relationship between charge size and thermal initiation critical temperature of explosive in defined conditions,cook-off test about JH explosive was carried out at a heating rate of 1 ℃/min usin...In order to study the relationship between charge size and thermal initiation critical temperature of explosive in defined conditions,cook-off test about JH explosive was carried out at a heating rate of 1 ℃/min using self-designed cook-off experiment setup based on thermostatic control technology.Numerical simulation was conducted to study the effects of different charge sizes on thermal initiation critical temperature of explosives with FLUENT software.Experiment results show that there is a thermal initiation critical temperature in cook-off bomb.Simulation results show that when the ratio of the length to diameter of explosives grains is a fixed value,the thermal initiation critical temperature of explosives decreases with the increase of the diameter of explosives grains.When the grains diameter of explosives increase up to a certain value,the influence of charge size on thermal initiation critical temperature tends to be weakened.Charge size has no influence on the ignition point of explosives.The ignition point is always in the center of the grain.展开更多
This paper presents a fiber optic temperature measuring system used for measuring the temperature in many occasions. The system is of reflective type and composed of thermostatic bimetal plate, lever piston framewo...This paper presents a fiber optic temperature measuring system used for measuring the temperature in many occasions. The system is of reflective type and composed of thermostatic bimetal plate, lever piston framework, optical grating and optical fiber probes. When the temperature changes, the thermostatic bimetal plate deforms. Through lever piston framework, the optical grating produces displacement in the upright direction. Thus the change of the temperature is transformed into the upright displacement of the optical grating. Optical fiber probes are used for detecting the number of streak lines of the optical grating′s displacement depending on the change of temperature. The detected signal can be transmitted to the control center through optical fiber cable up to distance of 1 km. The measurable range of this system reaches 100℃ with accuracy of ±0.2℃.展开更多
The existing fundamental laws of thermodynamics for micropolar continuum field theories are restudied and their incompleteness is pointed out. New first and second fundamental laws for thermostatics and thermodynamics...The existing fundamental laws of thermodynamics for micropolar continuum field theories are restudied and their incompleteness is pointed out. New first and second fundamental laws for thermostatics and thermodynamics for micropolar continua are postulated. From them all equilibrium equations and the entropy inequality of thermostatics as well as all balance equations and the entropy rate inequalities are naturally and simultaneously deduced. The comparisons between the new results presented here and the corresponding results demonstrated in existing monographs and textbooks concerning micropolar continuum mechanics are made at any time. It should be emphasized to note that, the problem of why the local balance equation of energy and the local entropy inequality could not be obtained from the existing fundamental laws of thermodynamics for micropolar continua, is believed to be clarified.展开更多
Heating by electricity rather than coal is considered one effective way to reduce environmental problems. Thus, the electric heating load is growing rapidly, which may cause undesired problems in distribution grids be...Heating by electricity rather than coal is considered one effective way to reduce environmental problems. Thus, the electric heating load is growing rapidly, which may cause undesired problems in distribution grids because of the randomness and dispersed integration of the load. However, the electric heating load may also function as an energy storage system with optimal operational control. Therefore, the optimal modeling of electric heating load characteristics, considering its randomness, is important for grid planning and construction. In this study, the heating loads of distributed residential users in a certain area are modeled based on the Fanger thermal comfort equation and the predicted mean vote thermal comfort index calculation method. Different temperatures are considered while modeling the users' heating loads. The heat load demand curve is estimated according to the time-varying equation of interior temperature. A multi-objective optimization model for the electric heating load with heat energy storage is then studied considering the demand response(DR), which optimizes economy and the comfort index. A fuzzy decision method is proposed, considering the factors influencing DR behavior. Finally, the validity of the proposed model is verified by simulations. The results show that the proposed model performs better than the traditional method.展开更多
Molecular dynamics with the stochastic process provides a convenient way to compute structural and thermodynamic properties of chemical, biological, and materials systems. It is demonstrated that the virtual dynamics ...Molecular dynamics with the stochastic process provides a convenient way to compute structural and thermodynamic properties of chemical, biological, and materials systems. It is demonstrated that the virtual dynamics case that we proposed for the Langevin equation [J. Chem. Phys. 147, 184104 (2017)] in principle exists in other types of stochastic thermostats as well. The recommended "middle" scheme [J. Chem. Phys. 147, 034109 (2017)] of the Andersen thermostat is investigated as an example. As shown by both analytic and numerical results, while the real and virtual dynamics cases approach the same plateau of the characteristic correlation time in the high collision frequency limit, the accuracy and efficiency of sampling are relatively insensitive to the value of the collision frequency in a broad range. After we compare the behaviors of the Andersen thermostat to those of Langevin dynamics, a heuristic schematic representation thermostatting processes with molecular is proposed for understanding efficient stochastic dynamics.展开更多
Molecular-dynamics(MD)simulations have been performed for the growth of a spherical methane-hydrate nano-crystallite,surrounded by a supersaturated water–methane liquid phase,using both a hybrid and globalsystem ther...Molecular-dynamics(MD)simulations have been performed for the growth of a spherical methane-hydrate nano-crystallite,surrounded by a supersaturated water–methane liquid phase,using both a hybrid and globalsystem thermostatting approach.It was found that hybrid thermostatting led to more sluggish growth and the establishment of a radial temperature profile about the spherical hydrate crystallite,in which the growing crystal phase is at a higher temperature than the surrounding liquid phase in the interfacial region,owing to latent-heat dissipation.In addition,Onsager’s-hypothesis fluctuation–dissipation analysis of fluctuations in the number of crystal-state water molecules at the interface shows slower growth.展开更多
Accurate and efficient integration of the equations of motion is indispensable for molecular dynamics(MD)simulations.Despite the massive use of the conventional leapfrog(LF)integrator in modern computational tools wit...Accurate and efficient integration of the equations of motion is indispensable for molecular dynamics(MD)simulations.Despite the massive use of the conventional leapfrog(LF)integrator in modern computational tools within the framework of MD propagation,further development for better performance is still possible.The alternative version of LF in the middle thermostat scheme(LFmiddle)achieves a higher order of accuracy and efficiency and maintains stable dynamics even with the integration time stepsize extended by several folds.In this work,we perform a benchmark test of the two integrators(LF and LF-middle)in extensive conventional and enhanced sampling simulations,aiming at quantifying the time-stepsizeinduced variations of global properties(e.g.,detailed potential energy terms)as well as of local observables(e.g.,free energy changes or bondlengths)in practical simulations of complex systems.The test set is composed of six chemically and biologically relevant systems,including the conformational change of dihedral flipping in the N-methylacetamide and an AT(AdenineThymine)tract,the intra-molecular proton transfer inside malonaldehyde,the binding free energy calculations of benzene and phenol targeting T4 lysozyme L99A,the hydroxyl bond variations in ethaline deep eutectic solvent,and the potential energy of the blue-light using flavin photoreceptor.It is observed that the time-step-induced error is smaller for the LFmiddle scheme.The outperformance of LF-middle over the conventional LF integrator is much more significant for global properties than local observables.Overall,the current work demonstrates that the LF-middle scheme should be preferably applied to obtain accurate thermodynamics in the simulation of practical chemical and biological systems.展开更多
The designed thermostat is based on the microcontroller featuring intelligence, programmable, environmental protection and power saving. The thermostat design is mainly composed of hardware and software design, the ha...The designed thermostat is based on the microcontroller featuring intelligence, programmable, environmental protection and power saving. The thermostat design is mainly composed of hardware and software design, the hardware includes the power supply circuit, temperature measurement circuit, humidity measurement circuit and backlight circuit; while the software design includes temperature measurement and compensation algorithm, moreover software flowchart is given as well. Finally the power supply circuit is simulated by the software of Pspice and the creative power stealing mode is verified by the simulation results. A target board is stuffed by hand with Pb-free electronic components and used to test hardware and debug software. Since the Pb-free components were used, power stealing mode is designed in hardware and temperature compensation algorithm is accomplished in software, and the thermostat is outstanding with its features of "green" and "power saving".展开更多
In this paper, single-walled carbon nanotubes (SWCNTs) are studied through molecular dynamics (MD) simulation. The simulations are performed at temperatures of 1 and 300K separately, with atomic interactions chara...In this paper, single-walled carbon nanotubes (SWCNTs) are studied through molecular dynamics (MD) simulation. The simulations are performed at temperatures of 1 and 300K separately, with atomic interactions characterized by the second Reactive Empirical Bond Order (REBO) potential, and temperature controlled by a certain thermostat, i.e. by separately using the velocity scaling, the Berendsen scheme, the Nose-Hoover scheme, and the generalized Langevin scheme. Results for a (5,5) SWCNT with a length of 24.5 nm show apparent distortions in nanotube configuration, which can further enter into periodic vibrations, except in simulations using the generalized Langevin thermostat, which is ascribed to periodic boundary conditions used in simulation. The periodic boundary conditions may implicitly be applied in the form of an inconsistent constraint along the axis of the nanotube. The combination of the inconsistent constraint with the cumulative errors in calculation causes the distortions of nanotubes. When the generalized Langevin thermostat is applied, inconsistently distributed errors are dispersed by the random forces, and so the distortions and vibrations disappear. This speculation is confirmed by simulation in the case without periodic boundary conditions, where no apparent distortion and vibration occur. It is also revealed that numerically induced distortions and vibrations occur only in simulation of nanotubes with a small diameter and a large length-to-diameter ratio. When MD simulation is applied to a system with a particular geometry, attention should be paid to avoiding the numerical distortion and the result infidelity.展开更多
The paper demonstrates deep unity of classic and quantum physics at the space thermostat (ST) presence, which fulfilled all space by the temperature T0 = 2.73 K. The ST presents itself the Cosmic Microwave Background ...The paper demonstrates deep unity of classic and quantum physics at the space thermostat (ST) presence, which fulfilled all space by the temperature T0 = 2.73 K. The ST presents itself the Cosmic Microwave Background (CMB). From the main quantum position we consider the ST/CMB as the wave function carrier (“quantum background”). The paper is devoted to ST/CMB medium the classic conservation laws of mass, momentum and energy. We show the soliton like solutions of our classic model correspond to Schrodinger’s quantum solutions, demonstrate the atom hydrogen specter and other quantum peculiarities. The paper contains typical technical examples classic/ quantum simulation at the ST presence.展开更多
In this paper, the impact of limiting thermostat on the rupture event occuring in Fuel-Oil burner fuel pre-heaters' resistant (heat generating) wires is inspected numerically. Gaseous fuel content in the pipeline h...In this paper, the impact of limiting thermostat on the rupture event occuring in Fuel-Oil burner fuel pre-heaters' resistant (heat generating) wires is inspected numerically. Gaseous fuel content in the pipeline has also been issued as a possibility. Heater's inner temperature distributions have been simulated by an in-house MATrix LABoratory (MATLAB) script in order to understand the resistant wire exposure to high temperatures by numerous scenarios. It is concluded that the effect of fuel flowrate is not a major effect on the wires' fate because of the limiting thermostat co-working. The main difference between the calculations is the effect of thermostat cut off function. The numerical simulations enlightened the dominant effect of thermostat sensing delay, so the overheating event. Intolerable delay results with a quick drop in the thermal efficiency and an increased possibility on wire rupture due to overheating which means a burner malfunction. Referring to the first numerical simulation results, a distributed and reduced heat flux was implemented with the same fluid and thermodynamic properties on a revised pre-heater model with an increased heater plate. The increment, thus the reduction on the heat flux of the ribbon wires has been noted as the key for safe operation.展开更多
https://www.sciencedirect.com/journal/energy-and-buildings/vol/212/suppl/C Volume 212,1 April 2020(1)Assessment of the impact of HVAC system configuration and control zoning on thermal comfort and energy efficiency in...https://www.sciencedirect.com/journal/energy-and-buildings/vol/212/suppl/C Volume 212,1 April 2020(1)Assessment of the impact of HVAC system configuration and control zoning on thermal comfort and energy efficiency in flexible office spaces,by Jasmin Anika Grtner,Francesco Massa Gray,Thomas Auer,Article 109785Abstract:In office buildings,the space layout usually needs to be repeatedly redesigned in order to meet tenants’requirements during the building’s life cycle.In this study,the effect of a flexible space layout design on thermal comfort and energy demand is investigated in a modern open-plan office space.Using dynamic thermal simulation.展开更多
Occupant-centric controls(OcC)is an indoor climate control approach whereby occupant feedback is used in the sequence of operation of building energy systems.While OcC has been used in a wide range of building applica...Occupant-centric controls(OcC)is an indoor climate control approach whereby occupant feedback is used in the sequence of operation of building energy systems.While OcC has been used in a wide range of building applications,an OcC category that has received considerable research interest is learning occupants'thermal preferences through their thermostat interactions and adapting temperature setpoints accordingly.Many recent studies used reinforcement learning(RL)as an agent for OcC to optimize energy use and occupant comfort.These studies depended on predicted mean vote(PMV)models or constant comfort ranges to represent comfort,while only few of them used thermostat interactions.This paper addresses this gap by introducing a new off-policy reinforcement learning(RL)algorithm that imitates the occupant behaviour by utilizing unsolicited occupant thermostat overrides.The algorithm is tested with a number of synthetically generated occupant behaviour models implemented via the Python APl of EnergyPlus.The simulation results indicate that the RL algorithm could rapidly learn preferences for all tested occupant behaviour scenarios with minimal exploration events.While substantial energy savings were observed with most occupant scenarios,the impact on the energy savings varied depending on occupants'preferences and thermostat use behaviour stochasticity.展开更多
Thermostatically controlled loads(TCLs)are regarded as having potential to participate in power grid regulation.This paper proposes a scheduling strategy with three-stage optimization for regional aggregators jointly ...Thermostatically controlled loads(TCLs)are regarded as having potential to participate in power grid regulation.This paper proposes a scheduling strategy with three-stage optimization for regional aggregators jointly participating in day-ahead scheduling to support demand response.The first stage is on the profit of aggregators and peak load of the grid.The line loss and voltage deviation of regulation are considered to ensure stable operation of the power grid at the second stage,which guarantees the fairness of the regulation and the comfort of users.A single tempera-ture adjustment strategy is used to control TCLs to maximize the response potential in the third stage.Finally,digital simulation based on the IEEE 33-bus distribution network system proves that the proposed three-stage scheduling strategy can keep the voltage deviation within±5%in different situations.In addition,the Gini coefficient of distribu-tion increases by 20%and the predicted percentage of dissatisfied is 48%lower than those without distribution.展开更多
As one of the important ways to utilize hydrogen energy,fuel cells are receiving more and more attention and research from countries and institutions.To meet the practical needs of testing the performance of high-powe...As one of the important ways to utilize hydrogen energy,fuel cells are receiving more and more attention and research from countries and institutions.To meet the practical needs of testing the performance of high-power fuel-cell systems and simulate the actual application environment as much as possible,a fuel-cell system test bench is usually used to test the system performance,in which the cooling-temperature control of the test bench has a great impact on the results of the performance of the fuel-cell system.This paper studies the cooling-temperature control strategy of a 150-kW-class fuel-cell engine test platform,proposes a new test-bench cooling-system structure with a thermostat and heat exchanger as the main heat-dissipation components,and compares and analyzes the impact of coordinated thermostat and heat-exchanger control on the fuel-cell system test performance.The test results show that the control strategy of the coordinated operation of a thermostat and heat exchanger can maintain the steady-state error to within±0.3℃and maintain the temperature variation to within±1.5℃during the loading-condition test,so as to avoid the limitation of system output performance due to excessive cooling-temperature fluctuation and ensure that the fuel-cell engine performance-test process is carried out smoothly and efficiently.展开更多
The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used a...The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings,together with other benefits.Measured building performance,however,often reveals a significant gap between the predicted energy use(design stage)and actual energy use(operation stage).For this reason,lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement.In this research,interpretable regression models are built with data at multiple temporal resolutions(monthly,daily and hourly)and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves(TRVs)and gas absorption heat pumps(GAHPs)as well as giving insights on the performance of the building as a whole.Further,as part of modelling research,time of week and temperature(TOWT)approach is reformulated and benchmarked against its original implementation.The case study chosen is Hale Court sheltered housing,located in the city of Portsmouth(UK).This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS.The results obtained are used to illustrate possible extensions of the use of energy signature modelling,highlighting implications for energy management and innovative building technologies development.展开更多
This paper proposes a day-ahead dispatch framework of thermostatically controlled loads(TCLs) for system peak load reduction. The proposed day-ahead scheduling framework estimates the user’s indoor thermal comfort de...This paper proposes a day-ahead dispatch framework of thermostatically controlled loads(TCLs) for system peak load reduction. The proposed day-ahead scheduling framework estimates the user’s indoor thermal comfort degree through the building thermal inertia modelling. Based on the thermal comfort estimation, a dayahead TCL scheduling model is formulated, which consists of 3 stages: TCL aggregator estimates maximal controllable TCL capacities at each scheduling time interval by solving a optimization model;[ the system operator performs the day-ahead system dispatch to determine the load shedding instruction for each aggregator;and ′the TCL aggregator schedules the ON/OFFcontrol actions of the TCL groups based on the instruction from the system operator. A heuristic based optimization method, history driven differential evolution(HDDE)algorithm, is employed to solve the day-ahead dispatch model of the TCL aggregator side. Simulations are conducted to validate the proposed model.展开更多
Due to their heat/cool storage characteristics, thermostatically controlled loads(TCLs) play an important role in demand response programmers. However, the modeling of the heat/cool storage characteristic of large num...Due to their heat/cool storage characteristics, thermostatically controlled loads(TCLs) play an important role in demand response programmers. However, the modeling of the heat/cool storage characteristic of large numbers of TCLs is not simple. In this paper, the heat exchange power is adopted to calculate the power instead of the average power, and the relationship between the heat exchange power and energy storage is considered to develop an equivalent storage model, based on which the time-varying power constraints and the energy storage constraints are developed to establish the overall day-ahead schedulingmodel. Finally, the proposed scheduling method is verified using the simulation results of a six-bus system.展开更多
文摘It is well known that smart thermostats (STs) have become key devices in the implementation of smart homes;thus, they are considered as primary elements for the control of electrical energy consumption in households. Moreover, energy consumption is drastically affected when the end users select unsuitable STs or when they do not use the STs correctly. Furthermore, in future, Mexico will face serious electrical energy challenges that can be considerably resolved if the end users operate the STs in a correct manner. Hence, it is important to carry out an in-depth study and analysis on thermostats, by focusing on social aspects that influence the technological use and performance of the thermostats. This paper proposes the use of a signal detection theory (SDT), fuzzy detection theory (FDT), and chi-square (CS) test in order to understand the perceptions and beliefs of end users about the use of STs in Mexico. This paper extensively shows the perceptions and beliefs about the selected thermostats in Mexico. Besides, it presents an in-depth discussion on the cognitive perceptions and beliefs of end users. Moreover, it shows why the expectations of the end users about STs are not met. It also promotes the technological and social development of STs such that they are relatively more accepted in complex electrical grids such as smart grids.
文摘In order to study the relationship between charge size and thermal initiation critical temperature of explosive in defined conditions,cook-off test about JH explosive was carried out at a heating rate of 1 ℃/min using self-designed cook-off experiment setup based on thermostatic control technology.Numerical simulation was conducted to study the effects of different charge sizes on thermal initiation critical temperature of explosives with FLUENT software.Experiment results show that there is a thermal initiation critical temperature in cook-off bomb.Simulation results show that when the ratio of the length to diameter of explosives grains is a fixed value,the thermal initiation critical temperature of explosives decreases with the increase of the diameter of explosives grains.When the grains diameter of explosives increase up to a certain value,the influence of charge size on thermal initiation critical temperature tends to be weakened.Charge size has no influence on the ignition point of explosives.The ignition point is always in the center of the grain.
文摘This paper presents a fiber optic temperature measuring system used for measuring the temperature in many occasions. The system is of reflective type and composed of thermostatic bimetal plate, lever piston framework, optical grating and optical fiber probes. When the temperature changes, the thermostatic bimetal plate deforms. Through lever piston framework, the optical grating produces displacement in the upright direction. Thus the change of the temperature is transformed into the upright displacement of the optical grating. Optical fiber probes are used for detecting the number of streak lines of the optical grating′s displacement depending on the change of temperature. The detected signal can be transmitted to the control center through optical fiber cable up to distance of 1 km. The measurable range of this system reaches 100℃ with accuracy of ±0.2℃.
基金Project supported by the National Natural Science Foundation of China (Nos. 10472041 and 10072024)the Science Research Foundation of Liaoning Province (No.990111001)
文摘The existing fundamental laws of thermodynamics for micropolar continuum field theories are restudied and their incompleteness is pointed out. New first and second fundamental laws for thermostatics and thermodynamics for micropolar continua are postulated. From them all equilibrium equations and the entropy inequality of thermostatics as well as all balance equations and the entropy rate inequalities are naturally and simultaneously deduced. The comparisons between the new results presented here and the corresponding results demonstrated in existing monographs and textbooks concerning micropolar continuum mechanics are made at any time. It should be emphasized to note that, the problem of why the local balance equation of energy and the local entropy inequality could not be obtained from the existing fundamental laws of thermodynamics for micropolar continua, is believed to be clarified.
基金supported by the State Grid Science and Technology Project(No.52020118000M)
文摘Heating by electricity rather than coal is considered one effective way to reduce environmental problems. Thus, the electric heating load is growing rapidly, which may cause undesired problems in distribution grids because of the randomness and dispersed integration of the load. However, the electric heating load may also function as an energy storage system with optimal operational control. Therefore, the optimal modeling of electric heating load characteristics, considering its randomness, is important for grid planning and construction. In this study, the heating loads of distributed residential users in a certain area are modeled based on the Fanger thermal comfort equation and the predicted mean vote thermal comfort index calculation method. Different temperatures are considered while modeling the users' heating loads. The heat load demand curve is estimated according to the time-varying equation of interior temperature. A multi-objective optimization model for the electric heating load with heat energy storage is then studied considering the demand response(DR), which optimizes economy and the comfort index. A fuzzy decision method is proposed, considering the factors influencing DR behavior. Finally, the validity of the proposed model is verified by simulations. The results show that the proposed model performs better than the traditional method.
文摘Molecular dynamics with the stochastic process provides a convenient way to compute structural and thermodynamic properties of chemical, biological, and materials systems. It is demonstrated that the virtual dynamics case that we proposed for the Langevin equation [J. Chem. Phys. 147, 184104 (2017)] in principle exists in other types of stochastic thermostats as well. The recommended "middle" scheme [J. Chem. Phys. 147, 034109 (2017)] of the Andersen thermostat is investigated as an example. As shown by both analytic and numerical results, while the real and virtual dynamics cases approach the same plateau of the characteristic correlation time in the high collision frequency limit, the accuracy and efficiency of sampling are relatively insensitive to the value of the collision frequency in a broad range. After we compare the behaviors of the Andersen thermostat to those of Langevin dynamics, a heuristic schematic representation thermostatting processes with molecular is proposed for understanding efficient stochastic dynamics.
基金the Irish Research Council for Government-of-Ireland postdoctoral fellowship, under grant no. GOIPD/2016/365
文摘Molecular-dynamics(MD)simulations have been performed for the growth of a spherical methane-hydrate nano-crystallite,surrounded by a supersaturated water–methane liquid phase,using both a hybrid and globalsystem thermostatting approach.It was found that hybrid thermostatting led to more sluggish growth and the establishment of a radial temperature profile about the spherical hydrate crystallite,in which the growing crystal phase is at a higher temperature than the surrounding liquid phase in the interfacial region,owing to latent-heat dissipation.In addition,Onsager’s-hypothesis fluctuation–dissipation analysis of fluctuations in the number of crystal-state water molecules at the interface shows slower growth.
基金supported by the National Natural Science Foundation of China(No.21961142017)the Ministry of Science and Technology of China(No.2017YFA0204901)。
文摘Accurate and efficient integration of the equations of motion is indispensable for molecular dynamics(MD)simulations.Despite the massive use of the conventional leapfrog(LF)integrator in modern computational tools within the framework of MD propagation,further development for better performance is still possible.The alternative version of LF in the middle thermostat scheme(LFmiddle)achieves a higher order of accuracy and efficiency and maintains stable dynamics even with the integration time stepsize extended by several folds.In this work,we perform a benchmark test of the two integrators(LF and LF-middle)in extensive conventional and enhanced sampling simulations,aiming at quantifying the time-stepsizeinduced variations of global properties(e.g.,detailed potential energy terms)as well as of local observables(e.g.,free energy changes or bondlengths)in practical simulations of complex systems.The test set is composed of six chemically and biologically relevant systems,including the conformational change of dihedral flipping in the N-methylacetamide and an AT(AdenineThymine)tract,the intra-molecular proton transfer inside malonaldehyde,the binding free energy calculations of benzene and phenol targeting T4 lysozyme L99A,the hydroxyl bond variations in ethaline deep eutectic solvent,and the potential energy of the blue-light using flavin photoreceptor.It is observed that the time-step-induced error is smaller for the LFmiddle scheme.The outperformance of LF-middle over the conventional LF integrator is much more significant for global properties than local observables.Overall,the current work demonstrates that the LF-middle scheme should be preferably applied to obtain accurate thermodynamics in the simulation of practical chemical and biological systems.
基金Youth Research Start-up Fund of XinJiang University(QN070136)National Natural Science Foundation of China(50667002)
文摘The designed thermostat is based on the microcontroller featuring intelligence, programmable, environmental protection and power saving. The thermostat design is mainly composed of hardware and software design, the hardware includes the power supply circuit, temperature measurement circuit, humidity measurement circuit and backlight circuit; while the software design includes temperature measurement and compensation algorithm, moreover software flowchart is given as well. Finally the power supply circuit is simulated by the software of Pspice and the creative power stealing mode is verified by the simulation results. A target board is stuffed by hand with Pb-free electronic components and used to test hardware and debug software. Since the Pb-free components were used, power stealing mode is designed in hardware and temperature compensation algorithm is accomplished in software, and the thermostat is outstanding with its features of "green" and "power saving".
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20060003025)the State Key Program for Basic Research of China (Grant No 2003CB716201)
文摘In this paper, single-walled carbon nanotubes (SWCNTs) are studied through molecular dynamics (MD) simulation. The simulations are performed at temperatures of 1 and 300K separately, with atomic interactions characterized by the second Reactive Empirical Bond Order (REBO) potential, and temperature controlled by a certain thermostat, i.e. by separately using the velocity scaling, the Berendsen scheme, the Nose-Hoover scheme, and the generalized Langevin scheme. Results for a (5,5) SWCNT with a length of 24.5 nm show apparent distortions in nanotube configuration, which can further enter into periodic vibrations, except in simulations using the generalized Langevin thermostat, which is ascribed to periodic boundary conditions used in simulation. The periodic boundary conditions may implicitly be applied in the form of an inconsistent constraint along the axis of the nanotube. The combination of the inconsistent constraint with the cumulative errors in calculation causes the distortions of nanotubes. When the generalized Langevin thermostat is applied, inconsistently distributed errors are dispersed by the random forces, and so the distortions and vibrations disappear. This speculation is confirmed by simulation in the case without periodic boundary conditions, where no apparent distortion and vibration occur. It is also revealed that numerically induced distortions and vibrations occur only in simulation of nanotubes with a small diameter and a large length-to-diameter ratio. When MD simulation is applied to a system with a particular geometry, attention should be paid to avoiding the numerical distortion and the result infidelity.
文摘The paper demonstrates deep unity of classic and quantum physics at the space thermostat (ST) presence, which fulfilled all space by the temperature T0 = 2.73 K. The ST presents itself the Cosmic Microwave Background (CMB). From the main quantum position we consider the ST/CMB as the wave function carrier (“quantum background”). The paper is devoted to ST/CMB medium the classic conservation laws of mass, momentum and energy. We show the soliton like solutions of our classic model correspond to Schrodinger’s quantum solutions, demonstrate the atom hydrogen specter and other quantum peculiarities. The paper contains typical technical examples classic/ quantum simulation at the ST presence.
文摘In this paper, the impact of limiting thermostat on the rupture event occuring in Fuel-Oil burner fuel pre-heaters' resistant (heat generating) wires is inspected numerically. Gaseous fuel content in the pipeline has also been issued as a possibility. Heater's inner temperature distributions have been simulated by an in-house MATrix LABoratory (MATLAB) script in order to understand the resistant wire exposure to high temperatures by numerous scenarios. It is concluded that the effect of fuel flowrate is not a major effect on the wires' fate because of the limiting thermostat co-working. The main difference between the calculations is the effect of thermostat cut off function. The numerical simulations enlightened the dominant effect of thermostat sensing delay, so the overheating event. Intolerable delay results with a quick drop in the thermal efficiency and an increased possibility on wire rupture due to overheating which means a burner malfunction. Referring to the first numerical simulation results, a distributed and reduced heat flux was implemented with the same fluid and thermodynamic properties on a revised pre-heater model with an increased heater plate. The increment, thus the reduction on the heat flux of the ribbon wires has been noted as the key for safe operation.
文摘https://www.sciencedirect.com/journal/energy-and-buildings/vol/212/suppl/C Volume 212,1 April 2020(1)Assessment of the impact of HVAC system configuration and control zoning on thermal comfort and energy efficiency in flexible office spaces,by Jasmin Anika Grtner,Francesco Massa Gray,Thomas Auer,Article 109785Abstract:In office buildings,the space layout usually needs to be repeatedly redesigned in order to meet tenants’requirements during the building’s life cycle.In this study,the effect of a flexible space layout design on thermal comfort and energy demand is investigated in a modern open-plan office space.Using dynamic thermal simulation.
文摘Occupant-centric controls(OcC)is an indoor climate control approach whereby occupant feedback is used in the sequence of operation of building energy systems.While OcC has been used in a wide range of building applications,an OcC category that has received considerable research interest is learning occupants'thermal preferences through their thermostat interactions and adapting temperature setpoints accordingly.Many recent studies used reinforcement learning(RL)as an agent for OcC to optimize energy use and occupant comfort.These studies depended on predicted mean vote(PMV)models or constant comfort ranges to represent comfort,while only few of them used thermostat interactions.This paper addresses this gap by introducing a new off-policy reinforcement learning(RL)algorithm that imitates the occupant behaviour by utilizing unsolicited occupant thermostat overrides.The algorithm is tested with a number of synthetically generated occupant behaviour models implemented via the Python APl of EnergyPlus.The simulation results indicate that the RL algorithm could rapidly learn preferences for all tested occupant behaviour scenarios with minimal exploration events.While substantial energy savings were observed with most occupant scenarios,the impact on the energy savings varied depending on occupants'preferences and thermostat use behaviour stochasticity.
基金supported in part by the National Natural Science Foundation of China(No.52007126 and No.U2166209).
文摘Thermostatically controlled loads(TCLs)are regarded as having potential to participate in power grid regulation.This paper proposes a scheduling strategy with three-stage optimization for regional aggregators jointly participating in day-ahead scheduling to support demand response.The first stage is on the profit of aggregators and peak load of the grid.The line loss and voltage deviation of regulation are considered to ensure stable operation of the power grid at the second stage,which guarantees the fairness of the regulation and the comfort of users.A single tempera-ture adjustment strategy is used to control TCLs to maximize the response potential in the third stage.Finally,digital simulation based on the IEEE 33-bus distribution network system proves that the proposed three-stage scheduling strategy can keep the voltage deviation within±5%in different situations.In addition,the Gini coefficient of distribu-tion increases by 20%and the predicted percentage of dissatisfied is 48%lower than those without distribution.
文摘As one of the important ways to utilize hydrogen energy,fuel cells are receiving more and more attention and research from countries and institutions.To meet the practical needs of testing the performance of high-power fuel-cell systems and simulate the actual application environment as much as possible,a fuel-cell system test bench is usually used to test the system performance,in which the cooling-temperature control of the test bench has a great impact on the results of the performance of the fuel-cell system.This paper studies the cooling-temperature control strategy of a 150-kW-class fuel-cell engine test platform,proposes a new test-bench cooling-system structure with a thermostat and heat exchanger as the main heat-dissipation components,and compares and analyzes the impact of coordinated thermostat and heat-exchanger control on the fuel-cell system test performance.The test results show that the control strategy of the coordinated operation of a thermostat and heat exchanger can maintain the steady-state error to within±0.3℃and maintain the temperature variation to within±1.5℃during the loading-condition test,so as to avoid the limitation of system output performance due to excessive cooling-temperature fluctuation and ensure that the fuel-cell engine performance-test process is carried out smoothly and efficiently.
文摘The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings,together with other benefits.Measured building performance,however,often reveals a significant gap between the predicted energy use(design stage)and actual energy use(operation stage).For this reason,lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement.In this research,interpretable regression models are built with data at multiple temporal resolutions(monthly,daily and hourly)and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves(TRVs)and gas absorption heat pumps(GAHPs)as well as giving insights on the performance of the building as a whole.Further,as part of modelling research,time of week and temperature(TOWT)approach is reformulated and benchmarked against its original implementation.The case study chosen is Hale Court sheltered housing,located in the city of Portsmouth(UK).This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS.The results obtained are used to illustrate possible extensions of the use of energy signature modelling,highlighting implications for energy management and innovative building technologies development.
基金supported in part by an AustralianResearch Council Future Fellowship scheme (No. FT140100130)in part by an Australian Research Discovery Project (No. DP170103427)
文摘This paper proposes a day-ahead dispatch framework of thermostatically controlled loads(TCLs) for system peak load reduction. The proposed day-ahead scheduling framework estimates the user’s indoor thermal comfort degree through the building thermal inertia modelling. Based on the thermal comfort estimation, a dayahead TCL scheduling model is formulated, which consists of 3 stages: TCL aggregator estimates maximal controllable TCL capacities at each scheduling time interval by solving a optimization model;[ the system operator performs the day-ahead system dispatch to determine the load shedding instruction for each aggregator;and ′the TCL aggregator schedules the ON/OFFcontrol actions of the TCL groups based on the instruction from the system operator. A heuristic based optimization method, history driven differential evolution(HDDE)algorithm, is employed to solve the day-ahead dispatch model of the TCL aggregator side. Simulations are conducted to validate the proposed model.
基金supported in part by the Postgraduate Innovation Cultivating Project in Jiangsu Province (No. KYCX18_1221)the National Natural Science Foundation of China (No. 51707099)China Postdoctoral Science Foundation (No. 2017M611859)
文摘Due to their heat/cool storage characteristics, thermostatically controlled loads(TCLs) play an important role in demand response programmers. However, the modeling of the heat/cool storage characteristic of large numbers of TCLs is not simple. In this paper, the heat exchange power is adopted to calculate the power instead of the average power, and the relationship between the heat exchange power and energy storage is considered to develop an equivalent storage model, based on which the time-varying power constraints and the energy storage constraints are developed to establish the overall day-ahead schedulingmodel. Finally, the proposed scheduling method is verified using the simulation results of a six-bus system.