期刊文献+
共找到252篇文章
< 1 2 13 >
每页显示 20 50 100
Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM 被引量:1
1
作者 Nsidibe Sunday Abdelhakim Settar +1 位作者 Khaled Chetehouna Nicolas Gascoin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1183-1199,共17页
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ... Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation. 展开更多
关键词 flow assurance flow pattern heat transfer flowlines two-phase flow Global sensitivity analysis
下载PDF
CONDENSING HEAT TRANSFER IN AN ADVANCED TWO-PHASE CLOSED THERMOSYPHON 被引量:1
2
作者 李修伦 闻建平 +1 位作者 单岩昆 黄鸿鼎 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1996年第1期88-92,共5页
1 INTRODUCTIONClosed thermosyphon has been developed to enhance heat transfer and recover wasteheat in various process industries [1,2].Stimulated by this success,a new type oftwo-phase closed thermosyphon was designe... 1 INTRODUCTIONClosed thermosyphon has been developed to enhance heat transfer and recover wasteheat in various process industries [1,2].Stimulated by this success,a new type oftwo-phase closed thermosyphon was designed by inserting respectively two inner tubesinto the thermosyphon,one in the boiling section and the other in the condensing sec-tion.The two-phase flow boiling heat transfer coefficient was calculated successfully onthe basis of Chen’s dual-mechanism [3].A boiling heat transfer model for thetwo-phase closed thermosyphon with an inner tube in the boiling section was pro- 展开更多
关键词 two-phase CLOSED thermosyphon heat transfer NARROW ANNULUS
下载PDF
Heat transfer model of two-phase flow across tube bundle in submerged combustion vaporizer
3
作者 Jiajun Song Dongyan Han +2 位作者 Qinqin Xu Dan Zhou Jianzhong Yin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第3期613-619,共7页
In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were cond... In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were conducted using water and CO_2 as the heat transfer media in the tubes, respectively. The results indicated that hot air flux, the initial liquid level height and the tube pitch ratio had great influence on the heat transfer coefficient outside the tube bundle(ho). Finally, the air flux associated factor β and height associated factor γ were introduced to propose a new hocorrelation. After verified by experiments using cold water, high pressure CO_2 and liquid N_2 as heat transfer media, respectively, it was found that the biggest deviation between the predicted and the experimental values was less than 25%. 展开更多
关键词 Submerged combustion vaporizer Fluid sweeping tube bundle two-phase flow heat transfer coefficient Modeling
下载PDF
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
4
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger Sloshing conditions two-phase flow MULTI-COMPONENT heat and mass transfer
下载PDF
Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles
5
作者 Xuejing He Zhenlin Li +1 位作者 Ji Wang Hai Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期16-25,共10页
The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes o... The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer. 展开更多
关键词 Tube shapes flow pattern Liquid film thickness heat transfer two-phase flow
下载PDF
Modeling of Heat Transfer and Steam Condensation Inside a Horizontal Flattened Tube
6
作者 M.Gh.Mohammed Kamil M.S.Kassim +1 位作者 R.A.Mahmood L.AZ Mahdi 《Fluid Dynamics & Materials Processing》 EI 2022年第4期985-998,共14页
This work investigates the steam condensation phenomena in an air-cooled condenser.The considered horizontal flattened tube has a 30 mm hydraulic diameter,and its length is a function of the steam quality with a limit... This work investigates the steam condensation phenomena in an air-cooled condenser.The considered horizontal flattened tube has a 30 mm hydraulic diameter,and its length is a function of the steam quality with a limit value between 0.95 and 0.05.The mass flow rate ranges from 4 to 40 kg/m^(2).s with a saturated temperature spanning an interval from 40°C to 80°C.A special approach has been implemented using the Engineering Equation Solver(EES)to solve a series of equations for the two-phase flow pattern and the related heat transfer coefficients.A wavy-stratified structure of the two-phase flow has been found when the mass rate was between 4 and 24 kg/m^(2).s.In contrast,an initially annular flow is gradually converted into a wavy stratified flow(due to the condensation process taking place inside the flattened tube)when the considered range ranges from 32 to 40 kg/m^(2).s. 展开更多
关键词 condensation flow pattern structure heat transfer rate flow in horizontal pipe flow behaviour EES modelling
下载PDF
Pressure Drop of Liquid–Solid Two-Phase Flow in the Vertical Tube Bundle of a Cold-Model Circulating Fluidized Bed Evaporator 被引量:2
7
作者 Feng Jiang Siyao Lv +2 位作者 Guopeng Qi Xiaoling Chen Xiulun Li 《Transactions of Tianjin University》 EI CAS 2019年第6期618-630,共13页
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr... A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry. 展开更多
关键词 Pressure drop Liquid-solid two-phase flow CIRCULATING fluidized bed EVAPORATOR VERTICAL tube BUNDLE heat transfer enhancement FOULING prevention DESCALING
下载PDF
Temperature distribution of fluids in a two-section two-phase closed thermosyphon wellbore
8
作者 Zhang Yufeng Zhao Lun +5 位作者 Fan Zifei Wu Xiaodong Fu Libing Xu Bifeng Kong Fanshun Jiang Shengdong 《Petroleum Science》 SCIE CAS CSCD 2014年第2期287-292,共6页
Compared with a conventional single section two-phase closed thermosyphon (TPCT) wellbore, a two-section TPCT wellbore has better heat transfer performance, which may improve the temperature distribution of fluid in... Compared with a conventional single section two-phase closed thermosyphon (TPCT) wellbore, a two-section TPCT wellbore has better heat transfer performance, which may improve the temperature distribution of fluid in wellbores, increase the temperature of fluid in wellheads and even more effectively reduce the failure rate of conventional TPCT wellbores. Heat transfer performance of two-section TPCT wellbores is affected by working medium, combination mode and oil flow rate. Different working media are introduced into the upper and lower TPCTs, which may achieve a better match between the working medium and the temperature field in the wellbores. Interdependence exists between the combination mode and the flow rate of the oil, which affects the heat transfer performance of a two-section TPCT wellbore. The experimental results show that a two-section TPCT wellbore, with equal upper and lower TPCTs respectively filled with Freon and methanol, has the best heat transfer performance when the oil flow rate is 200 L/h. 展开更多
关键词 Two-section two-phase closed thermosyphon temperature distribution combination mode heat transfer performance
下载PDF
Experimental Investigation on the Effection of Flow Regulator in a Multiple Evaporators/Condensers Loop Heat Pipe with Plastic Porous Structure
9
作者 Xinyu Chang H. Nagano 《Journal of Power and Energy Engineering》 2014年第9期49-56,共8页
Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multipl... Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multiple. This work discusses the cases that multiple loop heat pipes were operated with one condenser at high temperature and the other at low temperature. To avoid the high temperature returning liquid and keep the multiple loop heat pipes work properly, the flow regulator which was made of polyethylene was designed, fabricated and applied in this test. The effect of flow regulator was confirmed and analyzed. In the test that large temperature difference existed between two sinks, it can be found according to the result that the flow regulator worked effectively and prevented the high temperature vapor to enter the inlet of common liquid line, which can keep the evaporators and returning liquid to operate at low temperature. With the increment of heat loads and the temperature difference between two sinks, the pressure difference between two condensers became larger and larger. When the pressure difference was larger than the flow regulator’s capillary force, the flow regulator could not work properly because the high temperature vapor began to flow through the flow regulator. According to the test data, the flow regulator can work properly within the sinks’ temperature 0&deg;C/60&deg;C and the two evaporators’ heat load 30/30 W. 展开更多
关键词 flow REGULATOR Loop heat Pipe MULTIPLE Evaporators and condensERS two-phase heat transfer
下载PDF
Two-Phase Flow of Blood with Magnetic Dusty Particles in Cylindrical Region: A Caputo Fabrizio Fractional Model
10
作者 Anees Imitaz Aamina Aamina +2 位作者 Farhad Ali Ilyas Khan Kottakkaran Sooppy Nisar 《Computers, Materials & Continua》 SCIE EI 2021年第3期2253-2264,共12页
The present study is focused on the unsteady two-phase flow of blood in a cylindrical region.Blood is taken as a counter-example of Brinkman type fluid containing magnetic(dust)particles.The oscillating pressure gradi... The present study is focused on the unsteady two-phase flow of blood in a cylindrical region.Blood is taken as a counter-example of Brinkman type fluid containing magnetic(dust)particles.The oscillating pressure gradient has been considered because for blood flow it is necessary to investigate in the form of a diastolic and systolic pressure.The transverse magnetic field has been applied externally to the cylindrical tube to study its impact on both fluids as well as particles.The system of derived governing equations based on Navier Stoke’s,Maxwell and heat equations has been generalized using the well-known Caputo–Fabrizio(C–F)fractional derivative.The considered fractional model has been solved analytically using the joint Laplace and Hankel(L&H)transformations.The effect of various physical parameters such as fractional parameter,Gr,M andγ on blood and magnetic particles has been shown graphically using the Mathcad software.The fluid behaviour is thinner in fractional order as compared to the classical one. 展开更多
关键词 two-phase blood flow dusty fluid Brinkman type model magnetic dusty particles heat transfer C-F derivative
下载PDF
Surface-particle-emulsion heat transfer model between fluidized bed and horizontal immersed tube 被引量:1
11
作者 PingWu XuFeng 《Journal of University of Science and Technology Beijing》 CSCD 2002年第2期99-103,共5页
A mathematical model, surface-particle-emulsion heat transfer model, ispresented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heattransfer near the surface is treated by disperse... A mathematical model, surface-particle-emulsion heat transfer model, ispresented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heattransfer near the surface is treated by dispersed particles touching the surface and through theemulsion when the distance from the surface is greater than the diameter of a particle. A film withan adjustable thickness which separates particles from the surface is not introduced in this model.The coverage ratio of particles on the surface is calculated by a stochastic model of particlepacking density on a surface. By comparison of theoretical solutions with experimental data fromsome references, the mathematical model shows better qualitative and quantitative prediction forlocal heat transfer coefficients around a horizontal immersed tube in a fluidized bed. 展开更多
关键词 fluidized bed heat transfer two-phase flow mathematical model
下载PDF
Experiment on Boiling Heat Transfer of Refrigerant R134a in Mini-channels
12
作者 ZHAN Hongbo SHEN Hao +1 位作者 WEN Tao ZHANG Dalin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第1期80-87,共8页
The flow boiling heat transfer characteristics of refrigerant R134 a flowing inside two different kinds of minichannels are investigated. One channel is multi-port extruded with the hydraulic diameter of 0.63 mm,and t... The flow boiling heat transfer characteristics of refrigerant R134 a flowing inside two different kinds of minichannels are investigated. One channel is multi-port extruded with the hydraulic diameter of 0.63 mm,and the other one is rectangular with offset fins and a hydraulic diameter of 1.28 mm. The experiments are performed with a mass flow rate between 68 and 630 kg/(m^2·s),a heat flux between 9 and 64 kW/m^2,and a saturation pressure between 0.24 and 0.63 MPa,under the constant heat flux heating mode. It is found that the effect of mass flow rate on boiling heat transfer is related to heat flux,and that with the increase of heat flux,the effect can only be efficient in higher vapor quality region. The effects of heat flux and saturation pressure on boiling heat transfer are related to a threshold vapor quality,and the value will gradually decrease with the increase of heat flux or saturation pressure. Based on these analyses,a new correlation is proposed to predict the boiling heat transfer coefficient of refrigerant R134 a in the mini-channels under the experimental conditions. 展开更多
关键词 flow BOILING heat transfer two-phase flow REFRIGERANT R134A channels with offset FINS multi-portchannel
下载PDF
High-strength aluminum alloys hollow billet prepared by two-phase zone continuous casting
13
作者 Yao-hua Yang Xue-feng Liu Wang-zhang Chen 《China Foundry》 SCIE CAS 2022年第3期253-262,共10页
The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at ca... The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at casting speeds of 2-6 mm·min^(-1).Hollow billets under the same conditions were prepared,and their macro/microstructures were analyzed by an optical microscope and a scanning electron microscope.During the TZCC process,a circular fluid flow appears in front of the mushy zone,and the induction heated stepped mold and convective heat transfer result in a curved solidification front with depressed region near the inner wall and a vertical temperature gradient.The deflection of the solidification front decreases and the average cooling rate in the mushy zone increases with increasing casting speed.Experimental results for a 2D12 alloy show that hot tearing periodically appears in the hollow billet accompanied by macrosegregation near the inner wall at casting speeds of 2 and 4 mm·min^(-1),while macroscopic defects of hot tearing and macrosegregation weaken and the average size of columnar crystals in the hollow billets decreases with further increasing casting speed.2D12 aluminum alloy hollow billets with no macroscopic defects,the finest columnar crystals,and excellent mechanical properties were prepared by TZCC at a casting speed of 6 mm·min^(-1),which is beneficial for the further plastic forming process. 展开更多
关键词 two-phase zone continuous casting high-strength aluminum alloy hollow billet fluid flow heat transfer columnar crystals
下载PDF
Effect of Non-Condensable Gas Leakage on Long Term Cooling Performance of Loop Thermosyphon
14
作者 Hiroyuki Toyoda Yoshihiro Kondo 《Journal of Electronics Cooling and Thermal Control》 2013年第4期131-135,共5页
We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consid... We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consider NCG to provide guaranteed performance for a long time. In this study, the heat transfer performance of a thermosyphon was measured while changing the amount of NCG. The resultant performances were expressed as approximations. These approximations enabled us to predict the total thermal resistance of the thermosyphon by the amount of NCG and input heating. Then, using the known leakage in the thermosyphon and the amount of dissolved NCG in the water, we can predict the amount of NCG and the total thermal resistance of the thermosyphon after ten years. Although there is a slight leakage in the thermosyphon, we are able to design a thermosyphon with a guaranteed level of cooling performance for a long time using the proposed design method. 展开更多
关键词 thermosyphon BOILING condensation Non-condensable Gas heat transfer PERFORMANCE CPU COOLING
下载PDF
Operating Characteristics of Multiple Evaporators and Multiple Condensers Loop Heat Pipe with Polytetrafluoroethylene Wicks
15
作者 Sho Okutani Hosei Nagano +2 位作者 Shun Okazaki Hiroyuki Ogawa Hiroki Nagai 《Journal of Electronics Cooling and Thermal Control》 2014年第1期22-32,共11页
This paper presents fabrication and testing of a multiple-evaporator and multiple-condenser loop heat pipe (MLHP) with polytetrafluoroethylene (PTFE) porous media as wicks. The MLHP has two evaporators and two condens... This paper presents fabrication and testing of a multiple-evaporator and multiple-condenser loop heat pipe (MLHP) with polytetrafluoroethylene (PTFE) porous media as wicks. The MLHP has two evaporators and two condensers in a loop heat pipe in order to adapt to various changes of thermal condition in spacecraft. The PTFE porous media was used as the primary wicks to reduce heat leak from evaporators to compensation chambers. The tests were conducted under an atmospheric condition. In the tests that heat loads are applied to both evaporators, the MLHP was stably operated as with a LHP with a single evaporator and a single condenser. The relation between the sink temperature and the thermal resistance was experimentally evaluated. In the test with the heat load to one evaporator, the heat transfer from the heated evaporator to the unheated evaporator was confirmed. In the heat load switching test, in which the heat load is switched from one evaporator to another evaporator repeatedly, the MLHP could be stably operated. The loop operation with the large temperature difference between the heat sinks was also tested. From this result, the stable operation of the MLHP in the various conditions was demonstrated. It was also found that a flow regulator which prevents the uncondensed vapor from the condensers is required at the inlet of the common liquid line when one condenser has higher temperature and cannot condense the vapor in it. 展开更多
关键词 LOOP heat PIPE MULTIPLE Evaporators MULTIPLE condensERS Thermal Control two-phase heat transfer
下载PDF
Two-Phase Flow Patterns and Heat Transfer in Parallel Microchannels 被引量:2
16
作者 AlainDegiovanni BenjaminRemy StephanéAndre 《Journal of Thermal Science》 SCIE EI CAS CSCD 2002年第4期353-358,共6页
MicroChannel heat sinks with two-phase flow can satisfy the increasing heat removal requirements of modern micro electronic devices. One of the important aspects associated with two- phase flows in microchannels is to... MicroChannel heat sinks with two-phase flow can satisfy the increasing heat removal requirements of modern micro electronic devices. One of the important aspects associated with two- phase flows in microchannels is to study the bubble behavior. However, in the literature most of the reports present data of only a single channel. This does not account for flow mixing and hydrodynamic instability that occurs in parallel microchannels, connected by common inlet and outlet collectors. In the present study, experiments were performed for air- water and steam- water flow in parallel triangular microchannels with a base of 200-300μ m. The experimental study is based on systematic measurements of temperature and flow pattern by infrared radiometry and high-speed digital video imaging. In air-water flow, different flow patterns were observed simultaneously in the various microchannels at a fixed values of water and gas flow rates. In steam-water flow, instability in uniformly heated microchannels was observed. 展开更多
关键词 two-phase flow heat transfer microchannels dryout.
原文传递
Experimental Investigation on Heat Transfer Coefficient during Upward Flow Condensation of R410A in Vertical Smooth Tubes 被引量:4
17
作者 YANG Yunxiao JIA Li 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第2期155-163,共9页
This paper presents an experimental investigation on condensation of R410 A upward flow in vertical tubes with the same inner diameter of 8.02 mm and different lengths of 300 mm, 400 mm, 500 mm and 600 mm. Condensatio... This paper presents an experimental investigation on condensation of R410 A upward flow in vertical tubes with the same inner diameter of 8.02 mm and different lengths of 300 mm, 400 mm, 500 mm and 600 mm. Condensation experiments were performed at mass fluxes of 103-490 kg m-2s-1. The saturation temperatures of experimental condition were 31℃, 38℃and 48℃, alternatively. The average vapor quality in the test section is between 0.91 and 0.98. The effects of tube length, mass flux and condensation temperature on condensation were discussed. Four correlations used for the upward flow condensation were compared with the experimental data obtained from various experimental conditions. A modified correlation was proposed within a ±15% deviation range. 展开更多
关键词 R410A 冷凝结露 实验性 流动 传热系数 饱和温度 质量通量 蒸汽质量
原文传递
应用于新型环路热管的两相引射器数值模拟
18
作者 周尧 杨小平 +3 位作者 倪一程 刘继平 魏进家 严俊杰 《化工学报》 EI CSCD 北大核心 2024年第1期268-278,共11页
环路热管是一种高效被动式相变传热装置,广泛应用于高热流电子器件散热等领域。前期研究发现将小型两相引射器与平板式环路热管耦合,可大幅提高传热性能。然而,小型两相引射器内部流动及传热机理尚不清晰,难以对新型环路热管进行正向设... 环路热管是一种高效被动式相变传热装置,广泛应用于高热流电子器件散热等领域。前期研究发现将小型两相引射器与平板式环路热管耦合,可大幅提高传热性能。然而,小型两相引射器内部流动及传热机理尚不清晰,难以对新型环路热管进行正向设计与理论建模。通过数值模拟研究了汽水参数和混合腔结构对两相引射器性能及内部流场分布的影响。结果表明,喉部下游存在凝结激波,随着背压增加,其位置逐渐向喉部移动;其强度与背压、蒸汽产量、混合腔长度呈正相关,与水温呈负相关。引射器最大工作背压在40~125 kPa,与蒸汽产量和水温呈正相关,与混合腔长度呈负相关。通过大量模拟,得到了设计功率下水温和混合腔长度对引射器工作模式和压比的影响规律。 展开更多
关键词 环路热管 引射器 传热 两相流 凝结 激波 数值模拟
下载PDF
Condensation heat transfer characteristics of vapor flow in vertical small-diameter tube with variable wall temperature
19
作者 杜小泽 王补宣 《Science China(Technological Sciences)》 SCIE EI CAS 2002年第1期81-89,共9页
关键词 小直径的试管 流动冷凝作用 加热转移特征
原文传递
绝热段阻力对CO_(2)、R134a和R410A分离式热管传热性能的影响
20
作者 佟振 文欣然 +2 位作者 韩泽坤 房春雪 宋玉龙 《制冷学报》 CAS CSCD 北大核心 2024年第4期28-35,共8页
通过实验研究了上升管和下降管阻力对CO_(2)、R134a和R410A分离式热管传热性能的影响,分析了热管传热极限和传热热阻的变化规律。研究发现阻力变化对不同工质热管的影响不同,对于CO_(2)热管,上升管阻力和下降管阻力对其传热性能的影响... 通过实验研究了上升管和下降管阻力对CO_(2)、R134a和R410A分离式热管传热性能的影响,分析了热管传热极限和传热热阻的变化规律。研究发现阻力变化对不同工质热管的影响不同,对于CO_(2)热管,上升管阻力和下降管阻力对其传热性能的影响程度接近,当上升管或下降管阀门开度从90°降至30°时,CO_(2)热管的传热极限均由1200 W降为700 W。对于R134a和R410A热管而言,上升管阻力对其传热性能的影响更大,当上升管阀门开度从90°降至30°时,R410A热管的传热极限由1300 W降为700 W,R134a热管则未出现正常运行状态,管内始终存在较大的过热过冷度,两种热管的传热热阻也显著增大。而下降管阻力增大对R134a和R410A热管的传热性能几乎无影响。因此,在实际工程设计中,CO_(2)热管应采用上升管和下降管管径相同或相近的结构,而R134a和R410A热管适合采用上升管管径明显大于下降管管径的结构,以达到节省管材的目的。 展开更多
关键词 分离式热管 制冷剂 流动阻力 传热极限 传热热阻
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部