1 Introduction Jacobi forms are the generalization of Jacobi theta series and the coefficients of the Fourier-Jacobi expansion of a Siegel modular form. The theory develops systematically in recent years and has many ...1 Introduction Jacobi forms are the generalization of Jacobi theta series and the coefficients of the Fourier-Jacobi expansion of a Siegel modular form. The theory develops systematically in recent years and has many interesting applications in theory of modular forms and number theory.展开更多
Here, we determine formulae, for the numbers of representations of a positive integer by certain sextenary quadratic forms whose coefficients are 1, 2, 3 and 6.
文摘1 Introduction Jacobi forms are the generalization of Jacobi theta series and the coefficients of the Fourier-Jacobi expansion of a Siegel modular form. The theory develops systematically in recent years and has many interesting applications in theory of modular forms and number theory.
文摘Here, we determine formulae, for the numbers of representations of a positive integer by certain sextenary quadratic forms whose coefficients are 1, 2, 3 and 6.