An agile missile with tail fins and pulse thrusters has continuous and discontinuous control inputs.This brings certain difficulty to the autopilot design and stability analysis.Indirect robust control via Theta-D tec...An agile missile with tail fins and pulse thrusters has continuous and discontinuous control inputs.This brings certain difficulty to the autopilot design and stability analysis.Indirect robust control via Theta-D technique is employed to handle this problem.An acceleration tracking system is formulated based on the nonlinear dynamics of agile missile.Considering the dynamics of actuators,there is an error between actual input and computed input.A robust control problem is formed by treating the error as input uncertainty.The robust control is equivalent to a nonlinear quadratic optimal control of the nominal system with a modified performance index including uncertainty bound.Theta-D technique is applied to solve the nonlinear optimal control problem to obtain the final control law.Numerical results show the effectiveness and robustness of the proposed strategy.展开更多
基金supported by the National Natural Science Foundation of China(61174203)Aeronautical Science Foundation of China(20110177002)
文摘An agile missile with tail fins and pulse thrusters has continuous and discontinuous control inputs.This brings certain difficulty to the autopilot design and stability analysis.Indirect robust control via Theta-D technique is employed to handle this problem.An acceleration tracking system is formulated based on the nonlinear dynamics of agile missile.Considering the dynamics of actuators,there is an error between actual input and computed input.A robust control problem is formed by treating the error as input uncertainty.The robust control is equivalent to a nonlinear quadratic optimal control of the nominal system with a modified performance index including uncertainty bound.Theta-D technique is applied to solve the nonlinear optimal control problem to obtain the final control law.Numerical results show the effectiveness and robustness of the proposed strategy.