期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Gut microbiome-based thiamine metabolism contributes to the protective effect of one acidic polysaccharide from Selaginella uncinata(Desv.)Spring against inflammatory bowel disease
1
作者 Haochen Hui Zhuoya Wang +5 位作者 Xuerong Zhao Lina Xu Lianhong Yin Feifei Wang Liping Qu Jinyong Peng 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第2期177-195,共19页
Inflammatory bowel disease(IBD)is a serious disorder,and exploration of active compounds to treat it is necessary.An acidic polysaccharide named SUSP-4 was purified from Selaginella uncinata(Desv.)Spring,which contain... Inflammatory bowel disease(IBD)is a serious disorder,and exploration of active compounds to treat it is necessary.An acidic polysaccharide named SUSP-4 was purified from Selaginella uncinata(Desv.)Spring,which contained galacturonic acid,galactose,xylose,arabinose,and rhamnose with the main chain structure of→4)-α-d-GalAp-(1→and→6)-β-d-Galp-(1→and the branched structure of→5)-α-l-Araf-(1→.Animal experiments showed that compared with Model group,SUSP-4 significantly improved body weight status,disease activity index(DAI),colonic shortening,and histopathological damage,and elevated occludin and zonula occludens protein 1(ZO-1)expression in mice induced by dextran sulfate sodium salt(DSS).16S ribosomal RNA(rRNA)sequencing indicated that SUSP-4 markedly downregulated the level of Akkermansia and Alistipes.Metabolomics results confirmed that SUSP-4 obviously elevated thiamine levels compared with Model mice by adjusting thiamine metabolism,which was further confirmed by a targeted metabolism study.Fecal transplantation experiments showed that SUSP-4 exerted an anti-IBD effect by altering the intestinal flora in mice.A mechanistic study showed that SUSP-4 markedly inhibited macrophage activation by decreasing the levels of phospho-nuclear factor kappa-B(p-NF-κB)and cyclooxygenase-2(COX-2)and elevating NF-E2-related factor 2(Nrf2)levels compared with Model group.In conclusion,SUSP-4 affected thiamine metabolism by regulating Akkermania and inhibited macrophage activation to adjust NF-κB/Nrf2/COX-2-mediated inflammation and oxidative stress against IBD.This is the first time that plant polysaccharides have been shown to affect thiamine metabolism against IBD,showing great potential for in-depth research and development applications. 展开更多
关键词 Gut microbiota Inflammatory bowel disease POLYSACCHARIDE Selaginella uncinata(Desv.)Spring thiamine metabolism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部