The preparation of La0.4Sr0.6TiO3 (LSTO) buffer layer and YBa2Cu3O7-δ(YBCO) superconducting thick film by a low cost technology was studied. The crystal orientation of LSTO and YBCO films was detected by X-ray di...The preparation of La0.4Sr0.6TiO3 (LSTO) buffer layer and YBa2Cu3O7-δ(YBCO) superconducting thick film by a low cost technology was studied. The crystal orientation of LSTO and YBCO films was detected by X-ray diffraction, the conductivity of LSTO film and superconductivity of YBCO coating were investigated by standard four-probe method. Excellent in-plane alignment, smooth and dense LSTO buffer layer was successfully prepared on textured Ni-W taps by metal organic deposition (MOD). YBCO thick film was fabricated by electrophoretic deposition (EPD). The effects of applied voltage and deposition time on the YBCO coatings properties were studied. The results show that the critical current density of the YBCO coating deposited under 138 V for 35 min was about 600 A/cm2 (0 T, 77 K).展开更多
This paper reports that dense and crack-free (100) oriented lead zirconate titanate (Pb( Zr0. 52Ti0. 48 )O3, PZT) thick film embedded with PZT nanopartieles has been successfully fabricated on Pt/Cr/SiO2/Si subs...This paper reports that dense and crack-free (100) oriented lead zirconate titanate (Pb( Zr0. 52Ti0. 48 )O3, PZT) thick film embedded with PZT nanopartieles has been successfully fabricated on Pt/Cr/SiO2/Si substrate by using PT transition layer and PVP additive. The thick film possesses single-phase perovskite structure and perfectly (100) oriented. The (100) orientation degree of the PZT films strongly depended on annealing time and for the 4μm-thick PZT film which was annealed at 700℃ for 5 min is the largest. The (100) orientation degree of the PZT thick film gradually strengthen along with the thickness of film decreasing. The 3μm-thick PZT thick film which was annealed at 700℃ for 5 rain has the strongest (100) orientation degree, which is 82. 3%.展开更多
ZnO-based thick film varistors have been fabricated by Y203 doping and low-temperature sintering, of which the sample with the best electrical properties has a high potential gradient value of 3159.4 V/mm. The effects...ZnO-based thick film varistors have been fabricated by Y203 doping and low-temperature sintering, of which the sample with the best electrical properties has a high potential gradient value of 3159.4 V/mm. The effects of Y2O3 doping concentration and sintering temperature on the potential gradient of the samples were systematically investigated. The results show that the sample with the best electrical properties can be obtained by doping 0.08 mol% Y2O3 and sintering at 725℃. Under these optimum preparation conditions, the leakage current and the nonlinear coefficient are found to be 36.4 gA and 13.1. The sample with the best electrical properties has a grain size of 1.290um, a single grain boundary voltage of 4.08 V, a barrier height of 0.81 eV, and a depletion layer width of 10.2 nm, which are determined by thermionic emission. Small grain size with good grain boundary characteristics is beneficial to improve the electrical properties of varistors and promote the potential gradient.展开更多
YBCO textured thick film was prepared by direct peritectic growth method. Microstructure of the film was characterized. Electron backscattered diffraction (EBSD) technique was applied to the film for quantitative te...YBCO textured thick film was prepared by direct peritectic growth method. Microstructure of the film was characterized. Electron backscattered diffraction (EBSD) technique was applied to the film for quantitative texture analysis. The main difficulty in resolving the orientation of YBCO pseudo-cubic structure was investigated. Automated orientation mapping was performed on YBCO thick film. Local texture was presented in the form of orientation maps. Misorientation distribution and crystal growth characterization in the YBCO thick film were revealed. Large domains with well-aligned YBCO grains were formed. Each domain presented clear in-plane and out-plane textures.展开更多
The wide application of high pressure laminated (HPL) flooring has an insistent need for cutting tools with an excellent performance and fine cutting quality. Chemical vapor deposition (CVD) thick film diamond is a pr...The wide application of high pressure laminated (HPL) flooring has an insistent need for cutting tools with an excellent performance and fine cutting quality. Chemical vapor deposition (CVD) thick film diamond is a promising material for the machining of HPL flooring. In the present work, CVD thick film diamond tools were used to mill the wear resistance layer of HPL flooring. Wear volumes of flank face were examined by optical microscopy, and micro wear morphologies were observed by scanning electron microscopy (SEM). The experiments revealed that the predominant wear characteristics of CVD diamond tools were transgranular cleavage wear and intergranular peeling of the CVD diamond. Experimental results also showed that twin characteristic, cavity defect, micro crack and grain size of CVD thick film diamond contributed greatly to the wear process of CVD thick film diamond tools. The effects caused by the factors were also analyzed in detail in the paper.展开更多
In this paper, the oriented M-type barium ferrite (BaM) thick films with different thicknesses are prepared by tape casting. It is found that the crystallographic alignment degree (f), the pore and the squareness ...In this paper, the oriented M-type barium ferrite (BaM) thick films with different thicknesses are prepared by tape casting. It is found that the crystallographic alignment degree (f), the pore and the squareness ratio (Mr/Ms) are not affected by the thickness of the film. XRD and SEM results show that the thick film has hexagonal morphology with a crystal texture of c-axis grains perpendicular to film plane. The hysteresis curve indicates that the BaM thick film exhibits a self-biased property with a remanent magnetization of 3.30 T, a squareness ratio (Mr/Ms) of 0.81, and a coercivity of 0.40 T. The results show that the BaM thick film has potential for use in self-biasing microwave devices, and also proves that the tape casting technique is capable of fabricating high-quality barium ferrite films, thus providing a unique opportunity to realize the large area production of thick film.展开更多
Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in...Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in diameter) with a thickness of 413 μm was deposited in CHn/H2 plasma. It was then abraded for 2 hours and finally cut into pieces in a size of 10×10 mm^2 by pulse laser. NCD fihns were deposited on the thick film substrates by introducing a micro-crystalline diamond (MCD) interlayer. Results showed that a higher carbon concentration (5%) and a lower substrate temperature (650℃) were feasible to obtain a highly smooth interlayer, and the appropriate addition of oxygen (2%) into the gas mixture was conducive to obtaining a smooth nano-crystalline diamond film with a tiny grain size.展开更多
The CuO-doped ZnO thick films were prepared by the screen printing technique. The CuO doped ZnO composite materials were obtained by mixing AR grade (99.9% pure) Zinc Oxide powder mechanochemically in acetone medium...The CuO-doped ZnO thick films were prepared by the screen printing technique. The CuO doped ZnO composite materials were obtained by mixing AR grade (99.9% pure) Zinc Oxide powder mechanochemically in acetone medium with various weight percentages of Copper Chloride (CulCI2.2H20) powder (1, 3, 5, 7 and 9wt.%). The prepared materials were sintered at 1,000 ℃ for 12 h in air ambience and ball milled to ensure sufficiently fine particle size. The films were characterized by different techniques with respect to their surface morphology and compositional property by means of SEM (scanning electron microscope) and EDXA (energy dispersive x-ray analysis). The surface morphology of the films was studied by SEM and it shows the films are porous in nature and petal-shaped grains of sizes varies from 220 nm to 250 nm were observed. The final composition of each film was determined by the EDXA analysis. The gas response of undoped ZnO and CuO doped ZnO films was studied for different gases such as CO, C12, NH3, Ethanol, H2S and LPG at operating temperature ranging from 50 ℃ to 400 ℃. The 7wt.% CuO-doped ZnO film shows good response to H2S gas (100 ppm) at 250 ℃.展开更多
Europium and terbium coordination polymers of pyridine-3-carboxylic acid were in-situ composed with ethyt methacrylate ( EMA ). With the polymerization of EMA monomer and the formation of europium and terbium coordi...Europium and terbium coordination polymers of pyridine-3-carboxylic acid were in-situ composed with ethyt methacrylate ( EMA ). With the polymerization of EMA monomer and the formation of europium and terbium coordination polymers of pyridiae- 3-carboxylic acid, the transparent hybrid thick fihns composed of [ Eu( NIC )3 ]n ( [ Tb( NIC)3 ]n ) and poly ethyl mettuwrylate ( PEMA ) have been prepared. The luminescence properties and energy transfer of these polymeric composites were studied with absorption spectra, fluorescent excitation trod emission spectra in detail. All the hybrid thick films composed of terbium coordination polymer show the characteristic strong green emission of terbium ions, which implies the same energy transfer mechanism as the pure complex and the hybrid composite film is a suitable sabstrate for the luminescence of terbium ions. In the range of camposing concentration of luminescent species (0.01,0.025,0.05,0.1 mmol /15 mL EMA ), emission intensities increase with the increasing of corresponding composing concentration and the concentration quenching effect does not take place.展开更多
Pb0.97La0.02Zr0.95Ti0.05O3(PLZT)antiferroelectric thick films derived from different precursor solution concentrations are prepared on platinized silicon substrates by sol-gel processing.The films present polycrystall...Pb0.97La0.02Zr0.95Ti0.05O3(PLZT)antiferroelectric thick films derived from different precursor solution concentrations are prepared on platinized silicon substrates by sol-gel processing.The films present polycrystalline perovskite structure with a(100)preferred orientation by X-ray diffraction(XRD)analysis.The antiferroelectricity of the films is confirmed by the double hysteresis behaviors of polarization and double-bufferfly response of dielectric constant under the applied electrical field.Antiferroelectric properties and dielectric constant are improved while the polarization characteristic values are reduced with the increase of precursor solution concentration.The films at higher precursor solution concentration exhibit excellent dielectric properties.展开更多
A new sol-gel process is applied to fabricate the BST (BaxSr1-xTiO3) sol and nano-powder of La-Mn-Al co-doping with Ba/Sr ratio 65/35, and the BST thick film is prepared in the Pt/Ti/SiO2/Si substrate. The powder an...A new sol-gel process is applied to fabricate the BST (BaxSr1-xTiO3) sol and nano-powder of La-Mn-Al co-doping with Ba/Sr ratio 65/35, and the BST thick film is prepared in the Pt/Ti/SiO2/Si substrate. The powder and thick film are characterized by X-ray diffraction and transmission electron microscope. The influence of La-Mn-Al co-doping on the dielectric properties and micro-structure of BST thick film is analyzed. The results show that the La, Mn, and Al ions can take an obvious restraint on the growth of BaSrTiO3 grains. The polycrystalline particles come into being during the crystallization of thick film, which may improve the uniformity and compactness of thick film. The influence of unequal-valence and doping amount on the leakage current, dielectric loss, and dielectric property are mainly discussed. The dielectric constant and dielectric loss of thick film are 1200 and 0.03, respectively, in the case of 1mol% La doping, 2mol% Mn doping, and 1mol% Al doping.展开更多
Objective:To determine the frequency of malaria parasite detection from the buffy coal blood films by using capillary tube in falciparum malaria patients with negative conventional thick films.Methods:Thirty six uncom...Objective:To determine the frequency of malaria parasite detection from the buffy coal blood films by using capillary tube in falciparum malaria patients with negative conventional thick films.Methods:Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study.The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases,Bangkok,Thailand for 28 day.Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia,then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film.The first negative conventional thick films were compared with buffy coat thick films for parasite identification. Results:Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients(27.8%) with asexual forms of Plasmodium falciparum.Conclusions:The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8%of patients whose conventional thick films show negative parasitemia.展开更多
Pure ZnO thick film, prepared by screen-printing technique, was almost insensitive to NH3. Pure ZnO thick films were surface modified with MnO2 by dipping them into 0.01 M aqueous solution of manganese chloride (MnCl2...Pure ZnO thick film, prepared by screen-printing technique, was almost insensitive to NH3. Pure ZnO thick films were surface modified with MnO2 by dipping them into 0.01 M aqueous solution of manganese chloride (MnCl2) for different intervals of time and fired at 500℃ for 12 h. The grains of MnO2 would disperse around the grains of ZnO base material. The MnO2 modified ZnO films dipped for 30 min were observed to be sensitive and highly selective to NH3 gas at room temperature. An exceptional sensitivity was found to low concentration (50 ppm) of NH3 gas at room temperature and no cross sensitivity was observed even to high concentrations of other hazardous and polluting gases. The effects of surface microstructure and MnO2 concentrations on the sensitivity, selectivity, response and recovery of the sensor in the presence of NH3and other gases were studied and discussed. The better performance could be attributed to an optimum number of surface misfits in terms of MnO2 on the ZnO films.展开更多
Preparation and electrocatalytic activities of Pt-TiO_2 nanotubes(Ba_ 0.57Sr_ 0.33Ca_ 0.10)TiO_3 powders,prepared by the sol-gel method,were doped MnCO_3 as acceptor and Dy_2O_3 as donor.This powder was mixed with an ...Preparation and electrocatalytic activities of Pt-TiO_2 nanotubes(Ba_ 0.57Sr_ 0.33Ca_ 0.10)TiO_3 powders,prepared by the sol-gel method,were doped MnCO_3 as acceptor and Dy_2O_3 as donor.This powder was mixed with an organic vehicle and BSCT thick films were fabricated by the screen-printing techniques on alumina substrate.The structural and dielectric properties of BSCT thick films were investigated with variation of Dy_2O_3 amount.As a result of the differential thermal analysis(DTA),exothermic peak was observed at around 670℃ due to the formation of the polycrystalline perovskite phase.All the BSCT thick films showed the XRD patterns of a typical polycrystalline perovskite structure.The average grain size of BSCT thick films decreased with increasing amount of Dy_2O_3.The relative dielectric constant and dielectric loss of the BSCT thick film doped Dy_2O_3 0.1mol% were 4637.4 and 1.6% at 1kHz,respectively.展开更多
In order to get high-performance low voltage varistors,Cr2O3 doped ZnO ceramic thick films were fabricated by modified sol-gel process. The precursors were fabricated by dispersing doped-ZnO ceramic nano-powders in th...In order to get high-performance low voltage varistors,Cr2O3 doped ZnO ceramic thick films were fabricated by modified sol-gel process. The precursors were fabricated by dispersing doped-ZnO ceramic nano-powders in the sols,which were prepared by dissolving zinc acetate dihydrate into 2-methoxyethanol and stabilized by diethanolamine and glacial acetic acid and doped with a concentrated solution of bismuth nitrate,phenylstibonic acid,cobalt nitrate,manganese acetate and chromium nitrate. The results show that ZnCr2O4 phase can form in ZnO based ceramic films doped 1.0%(mole fraction) Cr2O3. Three secondary phases,such as Bi2O3,Zn7Sb2O12,and ZnCr2O4 phases,are detected in the thick films. The Raman spectra show that the intensity and the position of Raman bands of Zn7Sb2O12 and ZnCr2O4 phases change obviously with increasing Cr2O3 doping. The nonlinearity coefficient α of ZnO thick films is 7.0,the nonlinear voltage is 6 V,and the leakage current density is 0.7 μA/mm2.展开更多
Present paper reports the synthesis of SnO2, its characterization and performance as Liquefied Petroleum Gas (LPG) Sensor. XRD pattern revealed the tetragonal crystalline nature of the material. Crystallites sizes wer...Present paper reports the synthesis of SnO2, its characterization and performance as Liquefied Petroleum Gas (LPG) Sensor. XRD pattern revealed the tetragonal crystalline nature of the material. Crystallites sizes were in the range 14 - 30 nm. Tin oxide thick film was prepared by using screen printing technique. After that these were investigated through SEM. SEM image of thick-film surface was spherical in shape and porous. Further at room temperature, the film was exposed to LPG in a controlled gas chamber and variations in resistance with the concentrations of LPG were observed. The maximum value of average sensitivity of thick film was 37 MΩ/min for 5 vol. % of LPG. Sensor responses as a function of exposure and response times were also estimated and maximum sensor response were found 273 and 312 for 4 and 5 vol. % of LPG respectively.展开更多
Bismuth telluride thick films are suitable for thermoelectric (TE) devices covering large areas and operating at small-to-moderate temperature differences (20 - 200 K). High efficiency and high coefficient of performa...Bismuth telluride thick films are suitable for thermoelectric (TE) devices covering large areas and operating at small-to-moderate temperature differences (20 - 200 K). High efficiency and high coefficient of performance (COP) are expected to be achieved by using thick films in some cooling applications. Bismuth telluride thick films fabrication have been achieved with Galvanostatic and Potentionstatic deposition. Stoichiometric bismuth telluride thick film was obtained by Galvanostatic deposition at current density of 3.1 mAcm-2. Bismuth telluride films with average growth rate of 10 μmh-1 and different composition were obtained. Effects of current density and composition of electrolyte in Galvanostatic deposition were studied. The current density affected the film compactness, where films deposited at lower current density were more compact than those deposited at higher current density. The morphology of the films did not depend on the current density, but chemical composition was observed when different composition of electrolyte was used. Effects of distance between electrodes, composition of electrolyte solution, and stirring in Potentionstatic deposition were studied. The shorter the distance between electrodes, the higher the electric field, thus the higher current density was applied and the deposited film was less compact. The current density increased more rapidly with stirring during electrodeposition which leads to less compact film. Through this study, films electrode-posited from solution containing 0.013 M Bi(NO3)3.5 H2O, 0.01 M TeO2 and 1 M HNO3 at 3.1 mA cm-2 for 6 hours without stirring and with interelectrode distance of 4.5 cm were free-standing with average film thickness of 60 μm and optimum film composition of Bi2Te3. The crystallite size of the later films was found to be around 4.3 nm using Scherrer’s equation from XRD patterns. Also, negative Seebeck coefficient for the same samples was revealed with an average value of -82 μV.K-1.展开更多
The results of the investigation of conduction mechanism of silicate glass doped by oxide compounds of ruthenium (thick film resistor) are reported. The formation of diffusion zones in the softened glass during firing...The results of the investigation of conduction mechanism of silicate glass doped by oxide compounds of ruthenium (thick film resistor) are reported. The formation of diffusion zones in the softened glass during firing process of the mixture of the glass and the dopant powders is considered. As the result the doping glass becomes conductive. These diffusion zones have higher conductivity and act as percolation levels for the free charge carriers. The effect of tem-perature and duration of firing process on the conductivity of doped glass is considered. Experimental results are in a good agreement with the model.展开更多
This article is the final part of the investigation of conduction mechanism of silicate glass doped by oxide compounds of ruthenium (thick film resistors). In the first part [1], the formation of percolation levels du...This article is the final part of the investigation of conduction mechanism of silicate glass doped by oxide compounds of ruthenium (thick film resistors). In the first part [1], the formation of percolation levels due to diffusion of dopant atoms into the glass has been considered. The diffusion mechanism allowed us to explain shifting of the percolation threshold towards to lower value and the effect of firing conditions as well as the components composition on the electrical conduction of the doped glass. The coexistence of thermal activation and localization of free charge carriers as the result of nanocrystalline structure of the glass was the subject of the second part [2]. Because of it, the resistivity of the doped silicate glass is proportional to exp (–aT–ζ) at low temperatures (T 50 K), 0.4 ζ < 0.8. Structural transitions of nanocrystals take place at high temperatures (T > 800 K) and the conductivity of the doped silicate glass decreases sharply. We consider the origin of the minimum in the temperature dependence of resistivity of the doped silicate glass here. It is shown that the minimum arises from merge of impurity band into the valence band of glass at temperature high enough, so thermal activation of charge carriers as well as its hopping are failed, and scattering of free charge carriers become predominant factor in the temperature dependence of the resistivity.展开更多
基金Project(N100602010)supported by the Fundamental Research Funds for the Central Universities of China
文摘The preparation of La0.4Sr0.6TiO3 (LSTO) buffer layer and YBa2Cu3O7-δ(YBCO) superconducting thick film by a low cost technology was studied. The crystal orientation of LSTO and YBCO films was detected by X-ray diffraction, the conductivity of LSTO film and superconductivity of YBCO coating were investigated by standard four-probe method. Excellent in-plane alignment, smooth and dense LSTO buffer layer was successfully prepared on textured Ni-W taps by metal organic deposition (MOD). YBCO thick film was fabricated by electrophoretic deposition (EPD). The effects of applied voltage and deposition time on the YBCO coatings properties were studied. The results show that the critical current density of the YBCO coating deposited under 138 V for 35 min was about 600 A/cm2 (0 T, 77 K).
基金Sponsored by 863 Scientific Project of China (Grant No.2007AA03Z103)the National Natural Science Foundation of China (Grant No.50742007)the Key Laboratory Foundation of Sonar Technology of China(Grant No. 9140C24KF0901)
文摘This paper reports that dense and crack-free (100) oriented lead zirconate titanate (Pb( Zr0. 52Ti0. 48 )O3, PZT) thick film embedded with PZT nanopartieles has been successfully fabricated on Pt/Cr/SiO2/Si substrate by using PT transition layer and PVP additive. The thick film possesses single-phase perovskite structure and perfectly (100) oriented. The (100) orientation degree of the PZT films strongly depended on annealing time and for the 4μm-thick PZT film which was annealed at 700℃ for 5 min is the largest. The (100) orientation degree of the PZT thick film gradually strengthen along with the thickness of film decreasing. The 3μm-thick PZT thick film which was annealed at 700℃ for 5 rain has the strongest (100) orientation degree, which is 82. 3%.
基金supported by the Nano Special Plan from Shanghai Municipal Science and Technology Plan of Commission (No 0852nm06000)the Shanghai Municipal Natural Science Foundation (No 08ZR1406700)
文摘ZnO-based thick film varistors have been fabricated by Y203 doping and low-temperature sintering, of which the sample with the best electrical properties has a high potential gradient value of 3159.4 V/mm. The effects of Y2O3 doping concentration and sintering temperature on the potential gradient of the samples were systematically investigated. The results show that the sample with the best electrical properties can be obtained by doping 0.08 mol% Y2O3 and sintering at 725℃. Under these optimum preparation conditions, the leakage current and the nonlinear coefficient are found to be 36.4 gA and 13.1. The sample with the best electrical properties has a grain size of 1.290um, a single grain boundary voltage of 4.08 V, a barrier height of 0.81 eV, and a depletion layer width of 10.2 nm, which are determined by thermionic emission. Small grain size with good grain boundary characteristics is beneficial to improve the electrical properties of varistors and promote the potential gradient.
文摘YBCO textured thick film was prepared by direct peritectic growth method. Microstructure of the film was characterized. Electron backscattered diffraction (EBSD) technique was applied to the film for quantitative texture analysis. The main difficulty in resolving the orientation of YBCO pseudo-cubic structure was investigated. Automated orientation mapping was performed on YBCO thick film. Local texture was presented in the form of orientation maps. Misorientation distribution and crystal growth characterization in the YBCO thick film were revealed. Large domains with well-aligned YBCO grains were formed. Each domain presented clear in-plane and out-plane textures.
文摘The wide application of high pressure laminated (HPL) flooring has an insistent need for cutting tools with an excellent performance and fine cutting quality. Chemical vapor deposition (CVD) thick film diamond is a promising material for the machining of HPL flooring. In the present work, CVD thick film diamond tools were used to mill the wear resistance layer of HPL flooring. Wear volumes of flank face were examined by optical microscopy, and micro wear morphologies were observed by scanning electron microscopy (SEM). The experiments revealed that the predominant wear characteristics of CVD diamond tools were transgranular cleavage wear and intergranular peeling of the CVD diamond. Experimental results also showed that twin characteristic, cavity defect, micro crack and grain size of CVD thick film diamond contributed greatly to the wear process of CVD thick film diamond tools. The effects caused by the factors were also analyzed in detail in the paper.
基金Project supported by the Foundation of the Ministry of Science and Technology of China (Grant No. 2009GJE00033)the National Natural Youth Fund of China (Grant No. 61001025)the National Program for Science and Technology Development of Guangdong Province,China (Grant No. 2010B090400314)
文摘In this paper, the oriented M-type barium ferrite (BaM) thick films with different thicknesses are prepared by tape casting. It is found that the crystallographic alignment degree (f), the pore and the squareness ratio (Mr/Ms) are not affected by the thickness of the film. XRD and SEM results show that the thick film has hexagonal morphology with a crystal texture of c-axis grains perpendicular to film plane. The hysteresis curve indicates that the BaM thick film exhibits a self-biased property with a remanent magnetization of 3.30 T, a squareness ratio (Mr/Ms) of 0.81, and a coercivity of 0.40 T. The results show that the BaM thick film has potential for use in self-biasing microwave devices, and also proves that the tape casting technique is capable of fabricating high-quality barium ferrite films, thus providing a unique opportunity to realize the large area production of thick film.
基金supported by the Research Pund of Hubei Provincial Department of Education of China (No.Q20081505)
文摘Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in diameter) with a thickness of 413 μm was deposited in CHn/H2 plasma. It was then abraded for 2 hours and finally cut into pieces in a size of 10×10 mm^2 by pulse laser. NCD fihns were deposited on the thick film substrates by introducing a micro-crystalline diamond (MCD) interlayer. Results showed that a higher carbon concentration (5%) and a lower substrate temperature (650℃) were feasible to obtain a highly smooth interlayer, and the appropriate addition of oxygen (2%) into the gas mixture was conducive to obtaining a smooth nano-crystalline diamond film with a tiny grain size.
文摘The CuO-doped ZnO thick films were prepared by the screen printing technique. The CuO doped ZnO composite materials were obtained by mixing AR grade (99.9% pure) Zinc Oxide powder mechanochemically in acetone medium with various weight percentages of Copper Chloride (CulCI2.2H20) powder (1, 3, 5, 7 and 9wt.%). The prepared materials were sintered at 1,000 ℃ for 12 h in air ambience and ball milled to ensure sufficiently fine particle size. The films were characterized by different techniques with respect to their surface morphology and compositional property by means of SEM (scanning electron microscope) and EDXA (energy dispersive x-ray analysis). The surface morphology of the films was studied by SEM and it shows the films are porous in nature and petal-shaped grains of sizes varies from 220 nm to 250 nm were observed. The final composition of each film was determined by the EDXA analysis. The gas response of undoped ZnO and CuO doped ZnO films was studied for different gases such as CO, C12, NH3, Ethanol, H2S and LPG at operating temperature ranging from 50 ℃ to 400 ℃. The 7wt.% CuO-doped ZnO film shows good response to H2S gas (100 ppm) at 250 ℃.
文摘Europium and terbium coordination polymers of pyridine-3-carboxylic acid were in-situ composed with ethyt methacrylate ( EMA ). With the polymerization of EMA monomer and the formation of europium and terbium coordination polymers of pyridiae- 3-carboxylic acid, the transparent hybrid thick fihns composed of [ Eu( NIC )3 ]n ( [ Tb( NIC)3 ]n ) and poly ethyl mettuwrylate ( PEMA ) have been prepared. The luminescence properties and energy transfer of these polymeric composites were studied with absorption spectra, fluorescent excitation trod emission spectra in detail. All the hybrid thick films composed of terbium coordination polymer show the characteristic strong green emission of terbium ions, which implies the same energy transfer mechanism as the pure complex and the hybrid composite film is a suitable sabstrate for the luminescence of terbium ions. In the range of camposing concentration of luminescent species (0.01,0.025,0.05,0.1 mmol /15 mL EMA ), emission intensities increase with the increasing of corresponding composing concentration and the concentration quenching effect does not take place.
基金National Natural Science Foundation of China(No.60806039,No.51175483)China Postdoctoral Science Foundation Projects(No.20090461275,No.201003658)+1 种基金Shanxi Provincial Natural Science Foundation of China(No.20100210023-6)Shanxi Provincial Young Leaders on Science
文摘Pb0.97La0.02Zr0.95Ti0.05O3(PLZT)antiferroelectric thick films derived from different precursor solution concentrations are prepared on platinized silicon substrates by sol-gel processing.The films present polycrystalline perovskite structure with a(100)preferred orientation by X-ray diffraction(XRD)analysis.The antiferroelectricity of the films is confirmed by the double hysteresis behaviors of polarization and double-bufferfly response of dielectric constant under the applied electrical field.Antiferroelectric properties and dielectric constant are improved while the polarization characteristic values are reduced with the increase of precursor solution concentration.The films at higher precursor solution concentration exhibit excellent dielectric properties.
基金supported by the National High Technology Research and Development Program of China under Grant No2007AA032120the National Natural Science Foundation of China under Grant No 60777043
文摘A new sol-gel process is applied to fabricate the BST (BaxSr1-xTiO3) sol and nano-powder of La-Mn-Al co-doping with Ba/Sr ratio 65/35, and the BST thick film is prepared in the Pt/Ti/SiO2/Si substrate. The powder and thick film are characterized by X-ray diffraction and transmission electron microscope. The influence of La-Mn-Al co-doping on the dielectric properties and micro-structure of BST thick film is analyzed. The results show that the La, Mn, and Al ions can take an obvious restraint on the growth of BaSrTiO3 grains. The polycrystalline particles come into being during the crystallization of thick film, which may improve the uniformity and compactness of thick film. The influence of unequal-valence and doping amount on the leakage current, dielectric loss, and dielectric property are mainly discussed. The dielectric constant and dielectric loss of thick film are 1200 and 0.03, respectively, in the case of 1mol% La doping, 2mol% Mn doping, and 1mol% Al doping.
基金financially supported by Department of Clinical Tropical Medicine,Faculty of Tropical Medicine,Mahidol University,Thailand(grant No.CTM-2553-01)
文摘Objective:To determine the frequency of malaria parasite detection from the buffy coal blood films by using capillary tube in falciparum malaria patients with negative conventional thick films.Methods:Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study.The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases,Bangkok,Thailand for 28 day.Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia,then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film.The first negative conventional thick films were compared with buffy coat thick films for parasite identification. Results:Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients(27.8%) with asexual forms of Plasmodium falciparum.Conclusions:The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8%of patients whose conventional thick films show negative parasitemia.
文摘Pure ZnO thick film, prepared by screen-printing technique, was almost insensitive to NH3. Pure ZnO thick films were surface modified with MnO2 by dipping them into 0.01 M aqueous solution of manganese chloride (MnCl2) for different intervals of time and fired at 500℃ for 12 h. The grains of MnO2 would disperse around the grains of ZnO base material. The MnO2 modified ZnO films dipped for 30 min were observed to be sensitive and highly selective to NH3 gas at room temperature. An exceptional sensitivity was found to low concentration (50 ppm) of NH3 gas at room temperature and no cross sensitivity was observed even to high concentrations of other hazardous and polluting gases. The effects of surface microstructure and MnO2 concentrations on the sensitivity, selectivity, response and recovery of the sensor in the presence of NH3and other gases were studied and discussed. The better performance could be attributed to an optimum number of surface misfits in terms of MnO2 on the ZnO films.
基金KEI(R-2005-7-094)which is funded by MOCIE(Ministry of commerce,industry and energy)Mr.Parkand Ms.Nohare grateful tothe secondstage of BK21 programfor supporting a fellowship
文摘Preparation and electrocatalytic activities of Pt-TiO_2 nanotubes(Ba_ 0.57Sr_ 0.33Ca_ 0.10)TiO_3 powders,prepared by the sol-gel method,were doped MnCO_3 as acceptor and Dy_2O_3 as donor.This powder was mixed with an organic vehicle and BSCT thick films were fabricated by the screen-printing techniques on alumina substrate.The structural and dielectric properties of BSCT thick films were investigated with variation of Dy_2O_3 amount.As a result of the differential thermal analysis(DTA),exothermic peak was observed at around 670℃ due to the formation of the polycrystalline perovskite phase.All the BSCT thick films showed the XRD patterns of a typical polycrystalline perovskite structure.The average grain size of BSCT thick films decreased with increasing amount of Dy_2O_3.The relative dielectric constant and dielectric loss of the BSCT thick film doped Dy_2O_3 0.1mol% were 4637.4 and 1.6% at 1kHz,respectively.
基金Project(2004CB619300) supported by the Basic Research Development Program of ChinaProject(NCET-04-0703) supported by the Program for New Century Excellent Talents in University
文摘In order to get high-performance low voltage varistors,Cr2O3 doped ZnO ceramic thick films were fabricated by modified sol-gel process. The precursors were fabricated by dispersing doped-ZnO ceramic nano-powders in the sols,which were prepared by dissolving zinc acetate dihydrate into 2-methoxyethanol and stabilized by diethanolamine and glacial acetic acid and doped with a concentrated solution of bismuth nitrate,phenylstibonic acid,cobalt nitrate,manganese acetate and chromium nitrate. The results show that ZnCr2O4 phase can form in ZnO based ceramic films doped 1.0%(mole fraction) Cr2O3. Three secondary phases,such as Bi2O3,Zn7Sb2O12,and ZnCr2O4 phases,are detected in the thick films. The Raman spectra show that the intensity and the position of Raman bands of Zn7Sb2O12 and ZnCr2O4 phases change obviously with increasing Cr2O3 doping. The nonlinearity coefficient α of ZnO thick films is 7.0,the nonlinear voltage is 6 V,and the leakage current density is 0.7 μA/mm2.
文摘Present paper reports the synthesis of SnO2, its characterization and performance as Liquefied Petroleum Gas (LPG) Sensor. XRD pattern revealed the tetragonal crystalline nature of the material. Crystallites sizes were in the range 14 - 30 nm. Tin oxide thick film was prepared by using screen printing technique. After that these were investigated through SEM. SEM image of thick-film surface was spherical in shape and porous. Further at room temperature, the film was exposed to LPG in a controlled gas chamber and variations in resistance with the concentrations of LPG were observed. The maximum value of average sensitivity of thick film was 37 MΩ/min for 5 vol. % of LPG. Sensor responses as a function of exposure and response times were also estimated and maximum sensor response were found 273 and 312 for 4 and 5 vol. % of LPG respectively.
文摘Bismuth telluride thick films are suitable for thermoelectric (TE) devices covering large areas and operating at small-to-moderate temperature differences (20 - 200 K). High efficiency and high coefficient of performance (COP) are expected to be achieved by using thick films in some cooling applications. Bismuth telluride thick films fabrication have been achieved with Galvanostatic and Potentionstatic deposition. Stoichiometric bismuth telluride thick film was obtained by Galvanostatic deposition at current density of 3.1 mAcm-2. Bismuth telluride films with average growth rate of 10 μmh-1 and different composition were obtained. Effects of current density and composition of electrolyte in Galvanostatic deposition were studied. The current density affected the film compactness, where films deposited at lower current density were more compact than those deposited at higher current density. The morphology of the films did not depend on the current density, but chemical composition was observed when different composition of electrolyte was used. Effects of distance between electrodes, composition of electrolyte solution, and stirring in Potentionstatic deposition were studied. The shorter the distance between electrodes, the higher the electric field, thus the higher current density was applied and the deposited film was less compact. The current density increased more rapidly with stirring during electrodeposition which leads to less compact film. Through this study, films electrode-posited from solution containing 0.013 M Bi(NO3)3.5 H2O, 0.01 M TeO2 and 1 M HNO3 at 3.1 mA cm-2 for 6 hours without stirring and with interelectrode distance of 4.5 cm were free-standing with average film thickness of 60 μm and optimum film composition of Bi2Te3. The crystallite size of the later films was found to be around 4.3 nm using Scherrer’s equation from XRD patterns. Also, negative Seebeck coefficient for the same samples was revealed with an average value of -82 μV.K-1.
文摘The results of the investigation of conduction mechanism of silicate glass doped by oxide compounds of ruthenium (thick film resistor) are reported. The formation of diffusion zones in the softened glass during firing process of the mixture of the glass and the dopant powders is considered. As the result the doping glass becomes conductive. These diffusion zones have higher conductivity and act as percolation levels for the free charge carriers. The effect of tem-perature and duration of firing process on the conductivity of doped glass is considered. Experimental results are in a good agreement with the model.
文摘This article is the final part of the investigation of conduction mechanism of silicate glass doped by oxide compounds of ruthenium (thick film resistors). In the first part [1], the formation of percolation levels due to diffusion of dopant atoms into the glass has been considered. The diffusion mechanism allowed us to explain shifting of the percolation threshold towards to lower value and the effect of firing conditions as well as the components composition on the electrical conduction of the doped glass. The coexistence of thermal activation and localization of free charge carriers as the result of nanocrystalline structure of the glass was the subject of the second part [2]. Because of it, the resistivity of the doped silicate glass is proportional to exp (–aT–ζ) at low temperatures (T 50 K), 0.4 ζ < 0.8. Structural transitions of nanocrystals take place at high temperatures (T > 800 K) and the conductivity of the doped silicate glass decreases sharply. We consider the origin of the minimum in the temperature dependence of resistivity of the doped silicate glass here. It is shown that the minimum arises from merge of impurity band into the valence band of glass at temperature high enough, so thermal activation of charge carriers as well as its hopping are failed, and scattering of free charge carriers become predominant factor in the temperature dependence of the resistivity.