This paper investigates the properties of thickness extension mode excited by lateral electric field on LiNbO3 by using the extended Christoffel-Bechmann method. It finds that the lateral field excitation coupling fac...This paper investigates the properties of thickness extension mode excited by lateral electric field on LiNbO3 by using the extended Christoffel-Bechmann method. It finds that the lateral field excitation coupling factor for amode (quasi-extensional mode) reaches its maximum value of 28% on Xmcut LiNbO3. The characteristics of a lateral field excitation device made of X-cut LiNbO3 have been investigated and the lateral field excitation device is used for the design of a high frequency ultrasonic transducer. The time and frequency domain pulse/echo response of the LiNbO3 lateral field excitation ultrasonic transducer is analysed with the modified Krimholtz-Leedom-Matthae model and tested using traditional pulse/echo method. A LiNbO3 lateral field excitation ultrasonic transducer with the centre frequency of 33.44 MHz and the -6 dB bandwidth of 33.8% is acquired, which is in good agreement with the results of the Krimholtz-Leedom-Matthae model. Further analysis suggests that the LiNbO3 lateral field excitation device has great potential in the design of broadband high frequency ultrasonic transducers.展开更多
Lithium niobate(LiNbO_(3),LN)crystal is a multi-functional material with favorable piezoelectric,nonlinear optical and electro-optic properties.In this study,the electromechanical properties of the radial extensional(...Lithium niobate(LiNbO_(3),LN)crystal is a multi-functional material with favorable piezoelectric,nonlinear optical and electro-optic properties.In this study,the electromechanical properties of the radial extensional(RE)and the thickness extensional(TE)modes of the congruent LN are studied and the temperature dependent behaviors are revealed.The RE mode electromechanical coupling factors(kp)for the Y-and Z-oriented discs are calculated and found to be 3.8%and 24.7%,respectively,which are nearly the same as the experimental results of 3.8%and 25.2%,respectively.The maximum RE and thickness shear(TS)modes electromechanical coupling factors are obtained to be 47.6%and 68.5%for the Yx/25and Yx/167crystal cuts,respectively.The LN crystal possesses good temperature stability of the electromechanical coupling factors(RE and TE modes)from 20℃ to 500℃,where the variations of kp and kt for the Y-oriented discs are<8.0%and<1.8%,respectively.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.60571014)Shenzhen Shuangbai Project
文摘This paper investigates the properties of thickness extension mode excited by lateral electric field on LiNbO3 by using the extended Christoffel-Bechmann method. It finds that the lateral field excitation coupling factor for amode (quasi-extensional mode) reaches its maximum value of 28% on Xmcut LiNbO3. The characteristics of a lateral field excitation device made of X-cut LiNbO3 have been investigated and the lateral field excitation device is used for the design of a high frequency ultrasonic transducer. The time and frequency domain pulse/echo response of the LiNbO3 lateral field excitation ultrasonic transducer is analysed with the modified Krimholtz-Leedom-Matthae model and tested using traditional pulse/echo method. A LiNbO3 lateral field excitation ultrasonic transducer with the centre frequency of 33.44 MHz and the -6 dB bandwidth of 33.8% is acquired, which is in good agreement with the results of the Krimholtz-Leedom-Matthae model. Further analysis suggests that the LiNbO3 lateral field excitation device has great potential in the design of broadband high frequency ultrasonic transducers.
基金the Primary Research&Development Plan of Shandong Province(2017CXGC0413)the National Natural Science Foundation of China(Grant No.51872165).
文摘Lithium niobate(LiNbO_(3),LN)crystal is a multi-functional material with favorable piezoelectric,nonlinear optical and electro-optic properties.In this study,the electromechanical properties of the radial extensional(RE)and the thickness extensional(TE)modes of the congruent LN are studied and the temperature dependent behaviors are revealed.The RE mode electromechanical coupling factors(kp)for the Y-and Z-oriented discs are calculated and found to be 3.8%and 24.7%,respectively,which are nearly the same as the experimental results of 3.8%and 25.2%,respectively.The maximum RE and thickness shear(TS)modes electromechanical coupling factors are obtained to be 47.6%and 68.5%for the Yx/25and Yx/167crystal cuts,respectively.The LN crystal possesses good temperature stability of the electromechanical coupling factors(RE and TE modes)from 20℃ to 500℃,where the variations of kp and kt for the Y-oriented discs are<8.0%and<1.8%,respectively.