A new electroluminescence device is fabricated by microwave plasma chemical vapour deposition system and electron beam vapour deposition system. It is comprised of highly doped silicon/diamond/boron/nitrogen-doped dia...A new electroluminescence device is fabricated by microwave plasma chemical vapour deposition system and electron beam vapour deposition system. It is comprised of highly doped silicon/diamond/boron/nitrogen-doped diamond/indium tin oxide thin films. Effects of process parameters on morphologies and structures of the thin films are detected and analysed by scanning electron microscopy, Raman spectrometer and x-ray photoelectron spectrometer. A direct-current (DC) power supply is used to drive the electroluminescence device. The blue light emission with a luminance of 1.2 cd·m^-2 is observed from this double-doped diamond thin film electroluminescence device at an applied voltage of 105 V.展开更多
Large advancement has been made in understanding the nucleation and growth of chemical vapor deposition (CVD) diamond, but the adhesion of CVD diamond to substrates is poor and there is no good method for quantitati...Large advancement has been made in understanding the nucleation and growth of chemical vapor deposition (CVD) diamond, but the adhesion of CVD diamond to substrates is poor and there is no good method for quantitative evaluation of the adhesive strength. The blister test is a potentially powerful tool for characterizing the mechanical properties of diamond films. In this test, pressure was applied on a thin membrane and the out-of-plane deflection of the membrane center was measured. The Young's modulus, residual stress, and adhesive strength were simultaneously determined using the load-deflection behavior of a membrane. The free-standing window sample of diamond thin films was fabricated by means of photolithography and anisotropic wet etching. The research indicates that the adhesive strength of diamond thin films is 4.28±0.37 J/m^2. This method uses a simple apparatus, and the fabrication of samples is very easy.展开更多
In order to deposit good films, we need to study the uniformity of plasma density and the plasma density under different gas pressures and powers. The plasma density was diagnosed by a Langmuir probe. The optical emis...In order to deposit good films, we need to study the uniformity of plasma density and the plasma density under different gas pressures and powers. The plasma density was diagnosed by a Langmuir probe. The optical emission spectroscopy (OES) of CH4 and H2 discharge was obtained with raster spectroscopy, with characteristic peaks of H and CH achieved. Diamond-like carbon films were achieved based on the study of plasma density and OES and characterized by atomic force microscope (AFM), X-ray diffraction instrument (XRD), Raman spectroscope and profiler.展开更多
Nano-crystalline diamond (NCD) films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor in C2H5OH/H2 and CH4/H2/O2 systems, respectively, with a constant ...Nano-crystalline diamond (NCD) films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor in C2H5OH/H2 and CH4/H2/O2 systems, respectively, with a constant ratio of carbon/hydrogen/oxygen. By means of atomic force microscopy (AFM) and X-ray diffraction (XRD), it was shown that the NCD films deposited in the C2H5OH/H2 system possesses more uniform surface than that deposited in the CH4/H2/O2 system. Results from micro-Raman spectroscopy revealed that the quality of the NCD films was different even though the plasmas in the two systems contain exactly the same proportion of elements. In order to explain this phenomenon, the bond energy of forming OH groups, energy distraction in plasma and the deposition process of NCD films were studied. The experimental results and discussion indicate that for a same ratio of carbon/hydrogen/oxygen, the C2H5OH/H2 plasma was beneficial to deposit high quality NCD films with smaller average grain size and lower surface roughness.展开更多
Free-standing diamond films were prepared by hot filament chemical vapor deposition (HFCVD) method under different conditions. Inter-digital transducers (IDTs) were formed on the nucleation sides of free-standing diam...Free-standing diamond films were prepared by hot filament chemical vapor deposition (HFCVD) method under different conditions. Inter-digital transducers (IDTs) were formed on the nucleation sides of free-standing diamond films by photolithography technique. Then piezoelectric ZnO films were deposited by radio-frequency(RF) reactive magnetron sputtering to obtain the ZnO/diamond film structures. Surface morphologies of the nucleation sides and the IDTs were characterized by means of scanning electron microscopy (SEM), atomic force microscope (AFM) and optical microscopy. The results indicate that the surfaces of nucleation sides are very smooth and the IDTs are of high quality without discontinuity and short circuit phenomenon. Raman spectra show the sharp diamond feature peak at about 1 334 cm?1 and the small amount of non-diamond carbon in the nucleation side. X-ray diffraction (XRD) patterns of the structure of ZnO/diamond films show a strong diffraction peak of ZnO (002), which indicates that as-sputtered ZnO films are highly c-axis oriented.展开更多
The electrochemical oxidation capabilities of two high-performance electrodes,the boron-doped diamond film on Ti (Ti/BDD) and the lead oxide film on Ti (Ti/PbO2),were discussed.Hydroxyl radicals (·HO) gener...The electrochemical oxidation capabilities of two high-performance electrodes,the boron-doped diamond film on Ti (Ti/BDD) and the lead oxide film on Ti (Ti/PbO2),were discussed.Hydroxyl radicals (·HO) generated on the electrode surface were detected by using p-nitrosodimethylaniline (RNO) as the trapping reagent.Electrochemical oxidation measurements,including the chemical oxygen demand (COD) removal and the current efficiency (CE),were carried out via the degradation of p-nitrophenol (PNP) under the galvanostatic condition.The results indicate that an indirect reaction,which is attributed to free hydroxyl radicals with high activation,conducts on the Ti/BDD electrode,while the absorbed hydroxyl radicals generated at the Ti/PbO2 surface results in low degradation efficiency.Due to quick mineralization which combusts PNP to CO2 and H2O absolutely by the active hydroxyl radical directly,the CE obtained on the Ti/BDD electrode is much higher than that on the Ti/PbO2 electrode,notwithstanding the number of hydroxyl radicals produced on PbO2 is higher than that on the BDD surface.展开更多
Diamond-coated tools were fabricated using Co-cemented carbide inserts as substrates by the electronically aided hot filament chemical vapor deposition (EACVD). An amount of additive in an acid solution was used to pr...Diamond-coated tools were fabricated using Co-cemented carbide inserts as substrates by the electronically aided hot filament chemical vapor deposition (EACVD). An amount of additive in an acid solution was used to promote the Co etching of the substrate surface. The surface of the WC-Co substrate was decarburized by microwave plasma with Ar-H 2 gas. Effect of the new substrate pretreatment on the adhesion of diamond films was investigated. A boron-doped solution was brushed on the tool surface to diffuse boron into the substrates during diamond deposition. A new process was used to lower the surface roughness of diamond thin films by appropriately controlling deposition parameters. It consists of a composite diamond film chemical vapor deposition procedure including first the deposition of the rough polycrystalline diamond and then the fine-grained diamond. The research results show that the pretreatment including both Co etching in acid solution and Ar-H 2 etching decarburization by microwave plasma is an effective method to enhance adhesive strength. An adequate amount of boron dopant solution can effectively suppress the cobalt diffusion to the surface and avoid the catalytic effect of Co at the high temperature. The composite film CVD process can deposit smooth diamond films with low surface roughness. It is of great significance for improvement of the cutting performances of diamond-coated tools using the above new technology to deposit diamond coatings with the low surface roughness and high adhesive strength on WC-Co substrates.展开更多
In this study, tetrahedral amorphous carbon (ta-C) films with thicknesses between several 100 nm and several micrometers have been deposited onto polished tungsten carbide and steel substrates by pulsed laser depositi...In this study, tetrahedral amorphous carbon (ta-C) films with thicknesses between several 100 nm and several micrometers have been deposited onto polished tungsten carbide and steel substrates by pulsed laser deposition (PLD) using an excimer laser (248 nm wavelength). We investigate the optical properties (e.g. the refractive index (n) and extinction coefficient (k) in the visible and near-infrared wavelength range) of these layers in dependence of the used laser ablation fluence on the target. It is shown that n of ~2000 nm thick ta-C films can be tuned, depending on the sp3-content, between n = 2.5 and 2.8 at a wavelength of 632 nm. Besides of this k reduces with the sp3-content and is as low as 0.03 at sp3-contents of more than 75%. We proof that this gives the opportunity to prepare coating with tailored optical properties. Furthermore, it is shown that the ta-C films have low background fluorescence in the wavelengths range of 380 - 750 nm, which make this thin films attractive for certain optical, medical and biotechnological applications. We present for the first time that one possible application is the use in Lab-on-a-Chip-systems (LOC). Within these systems, the ultrasensitive detection of fluorescence markers and dyes is a challenge. In order to increase the signal-to-noise-ratio, a setup was developed, that used the specific optical properties of ta-C films produced by PLD. We used the ta-C film as an integrated reflector that combined low background fluorescence, a low reflectivity at the excitation wavelength and the high reflectivity at the emission wavelength. We prove that this setup improves the detection of fluorescence photons.展开更多
Compared with the sintered polycrystalline diamond, the deposited thin film diamond has the great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of their low costs for fa...Compared with the sintered polycrystalline diamond, the deposited thin film diamond has the great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of their low costs for fabrication equipment and high performance on high speed machining non-ferrous metals and alloys, metal-compound materials, and hard brittle non-metals, diamond-coated drills find great potentialities in the commercial application. However, the poor adhesion of the diamond film on the substrate becomes the main technical barriers for the successful development and commercialization of diamond-coated tools. In this paper, diamond thin films were deposited on WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple chemical pre-treatment technology including microwave oxidation, reaction in alkaline solution and cleaning by ultrasonic treatment in acid solution was developed and affects on the diamond adhesion strength, nucleation and surface morphology were investigated. At the same time, a special setup to fabricate diamond-coated drills was also developed and then the novel CVD process based on the varied parameters controlling model was presented, therefore the uniform quality and homogenized thickness of diamond coating could be available. From practical utilization viewpoint, the cutting performance of the diamond-coated drill was studied by drilling SiC particle reinforced aluminum matrix composite. The satisfied wear resistance and decrease of torque and thrust led to the long life of this kind of drill. This paper exhibited the meaningful work for the development of cutting tools with complex geometries and further extended the application of diamond material.展开更多
Blue electroluminescence of diamond thin film has already been investigated by some authors. To our knowledge, ultraviolet electroluminescence of diamond thin film has not been reported so far. We have prepared an ele...Blue electroluminescence of diamond thin film has already been investigated by some authors. To our knowledge, ultraviolet electroluminescence of diamond thin film has not been reported so far. We have prepared an electroluminescence device with展开更多
Boron-doped diamond (BDD) thin films with different crystal grain sizes were prepared by controlling the reacting gas pressure using hot filament chemical vapor deposition (HFCVD).The morphologies and structures of th...Boron-doped diamond (BDD) thin films with different crystal grain sizes were prepared by controlling the reacting gas pressure using hot filament chemical vapor deposition (HFCVD).The morphologies and structures of the prepared diamond thin films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy.The electrochemical responses of K4Fe(CN)6 on different BDD electrodes were investigated.The results suggested that electron transfer was faster at the boron-doped nanocrystalline diamond (BDND) thin film electrodes in comparison with that at other BDD thin film electrodes.The prepared BDD thin film electrodes without any modification were used to directly detect glucose in the basic solution.The results showed that the as-prepared BDD thin film electrodes exhibited good selectivity for detecting glucose in the presence of ascorbic acid (AA) and uric acid (UA).The higher sensitivity was observed on the BDND thin film grown on the boron-doped microcrystalline diamond (BDMD) thin film surface,and the linear response range,sensitivity and the low detection limit were 0.25–10 mM,189.1 μA mmol-1 cm-2 and 25 μM (S/N=3) for glucose in the presence of AA and UA,respectively.展开更多
Switching phenomena in some semiconductor wafers and thin films were observed early. However, to our knowledge, there is no report about the switching behaviour of diamond thin film. Because the diamond thin film poss...Switching phenomena in some semiconductor wafers and thin films were observed early. However, to our knowledge, there is no report about the switching behaviour of diamond thin film. Because the diamond thin film possesses a great number of good properties, such as wide band gap, high breakdown voltage, high electron mobilities and high electron saturation velocity, the investigation on the switching behaviour of diamond thin film will be of great value for achieving high voltage and high power switching devices. We展开更多
Diamond has extreme hardness and is a new type of multi-function material which has excellent electrical, optical, thermal and mechanical properties.Russian scientists Derjaguin et al. successfully synthesized diamond...Diamond has extreme hardness and is a new type of multi-function material which has excellent electrical, optical, thermal and mechanical properties.Russian scientists Derjaguin et al. successfully synthesized diamond on nondiamond substrates by chemical transport reaction method in 1976. In 1982, Japanese sci-展开更多
基金supported by the Shanghai Education Committee of China (Grant No.07ZZ95)the Shanghai Human Resources and Social Security Bureau (Grant No.2009023)
文摘A new electroluminescence device is fabricated by microwave plasma chemical vapour deposition system and electron beam vapour deposition system. It is comprised of highly doped silicon/diamond/boron/nitrogen-doped diamond/indium tin oxide thin films. Effects of process parameters on morphologies and structures of the thin films are detected and analysed by scanning electron microscopy, Raman spectrometer and x-ray photoelectron spectrometer. A direct-current (DC) power supply is used to drive the electroluminescence device. The blue light emission with a luminance of 1.2 cd·m^-2 is observed from this double-doped diamond thin film electroluminescence device at an applied voltage of 105 V.
文摘Large advancement has been made in understanding the nucleation and growth of chemical vapor deposition (CVD) diamond, but the adhesion of CVD diamond to substrates is poor and there is no good method for quantitative evaluation of the adhesive strength. The blister test is a potentially powerful tool for characterizing the mechanical properties of diamond films. In this test, pressure was applied on a thin membrane and the out-of-plane deflection of the membrane center was measured. The Young's modulus, residual stress, and adhesive strength were simultaneously determined using the load-deflection behavior of a membrane. The free-standing window sample of diamond thin films was fabricated by means of photolithography and anisotropic wet etching. The research indicates that the adhesive strength of diamond thin films is 4.28±0.37 J/m^2. This method uses a simple apparatus, and the fabrication of samples is very easy.
基金supported in part by the National Natural Science Foundation of China (10575039) the Chinese Specialized Research Fund for the Doctoral Programme of Higher Education (2004057408)+1 种基金the Key Project of Science Research Fund of Guangdong (China) (05100534)the Science Project Foundation of Guangzhou City (China) (2005Z3-D2031).
文摘In order to deposit good films, we need to study the uniformity of plasma density and the plasma density under different gas pressures and powers. The plasma density was diagnosed by a Langmuir probe. The optical emission spectroscopy (OES) of CH4 and H2 discharge was obtained with raster spectroscopy, with characteristic peaks of H and CH achieved. Diamond-like carbon films were achieved based on the study of plasma density and OES and characterized by atomic force microscope (AFM), X-ray diffraction instrument (XRD), Raman spectroscope and profiler.
文摘Nano-crystalline diamond (NCD) films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor in C2H5OH/H2 and CH4/H2/O2 systems, respectively, with a constant ratio of carbon/hydrogen/oxygen. By means of atomic force microscopy (AFM) and X-ray diffraction (XRD), it was shown that the NCD films deposited in the C2H5OH/H2 system possesses more uniform surface than that deposited in the CH4/H2/O2 system. Results from micro-Raman spectroscopy revealed that the quality of the NCD films was different even though the plasmas in the two systems contain exactly the same proportion of elements. In order to explain this phenomenon, the bond energy of forming OH groups, energy distraction in plasma and the deposition process of NCD films were studied. The experimental results and discussion indicate that for a same ratio of carbon/hydrogen/oxygen, the C2H5OH/H2 plasma was beneficial to deposit high quality NCD films with smaller average grain size and lower surface roughness.
基金Projects(60577040) supported by the National Natural Science Foundation of China Project(0404) supported by the Shanghai Foundation of Applied Materials Research and Development+1 种基金 Projects(0452nm051, 05nm05046) supported by the Nano-technology Project of Shanghai Project(T0101) supported by the Shanghai Leading Academic Disciplines
文摘Free-standing diamond films were prepared by hot filament chemical vapor deposition (HFCVD) method under different conditions. Inter-digital transducers (IDTs) were formed on the nucleation sides of free-standing diamond films by photolithography technique. Then piezoelectric ZnO films were deposited by radio-frequency(RF) reactive magnetron sputtering to obtain the ZnO/diamond film structures. Surface morphologies of the nucleation sides and the IDTs were characterized by means of scanning electron microscopy (SEM), atomic force microscope (AFM) and optical microscopy. The results indicate that the surfaces of nucleation sides are very smooth and the IDTs are of high quality without discontinuity and short circuit phenomenon. Raman spectra show the sharp diamond feature peak at about 1 334 cm?1 and the small amount of non-diamond carbon in the nucleation side. X-ray diffraction (XRD) patterns of the structure of ZnO/diamond films show a strong diffraction peak of ZnO (002), which indicates that as-sputtered ZnO films are highly c-axis oriented.
文摘The electrochemical oxidation capabilities of two high-performance electrodes,the boron-doped diamond film on Ti (Ti/BDD) and the lead oxide film on Ti (Ti/PbO2),were discussed.Hydroxyl radicals (·HO) generated on the electrode surface were detected by using p-nitrosodimethylaniline (RNO) as the trapping reagent.Electrochemical oxidation measurements,including the chemical oxygen demand (COD) removal and the current efficiency (CE),were carried out via the degradation of p-nitrophenol (PNP) under the galvanostatic condition.The results indicate that an indirect reaction,which is attributed to free hydroxyl radicals with high activation,conducts on the Ti/BDD electrode,while the absorbed hydroxyl radicals generated at the Ti/PbO2 surface results in low degradation efficiency.Due to quick mineralization which combusts PNP to CO2 and H2O absolutely by the active hydroxyl radical directly,the CE obtained on the Ti/BDD electrode is much higher than that on the Ti/PbO2 electrode,notwithstanding the number of hydroxyl radicals produced on PbO2 is higher than that on the BDD surface.
文摘Diamond-coated tools were fabricated using Co-cemented carbide inserts as substrates by the electronically aided hot filament chemical vapor deposition (EACVD). An amount of additive in an acid solution was used to promote the Co etching of the substrate surface. The surface of the WC-Co substrate was decarburized by microwave plasma with Ar-H 2 gas. Effect of the new substrate pretreatment on the adhesion of diamond films was investigated. A boron-doped solution was brushed on the tool surface to diffuse boron into the substrates during diamond deposition. A new process was used to lower the surface roughness of diamond thin films by appropriately controlling deposition parameters. It consists of a composite diamond film chemical vapor deposition procedure including first the deposition of the rough polycrystalline diamond and then the fine-grained diamond. The research results show that the pretreatment including both Co etching in acid solution and Ar-H 2 etching decarburization by microwave plasma is an effective method to enhance adhesive strength. An adequate amount of boron dopant solution can effectively suppress the cobalt diffusion to the surface and avoid the catalytic effect of Co at the high temperature. The composite film CVD process can deposit smooth diamond films with low surface roughness. It is of great significance for improvement of the cutting performances of diamond-coated tools using the above new technology to deposit diamond coatings with the low surface roughness and high adhesive strength on WC-Co substrates.
文摘In this study, tetrahedral amorphous carbon (ta-C) films with thicknesses between several 100 nm and several micrometers have been deposited onto polished tungsten carbide and steel substrates by pulsed laser deposition (PLD) using an excimer laser (248 nm wavelength). We investigate the optical properties (e.g. the refractive index (n) and extinction coefficient (k) in the visible and near-infrared wavelength range) of these layers in dependence of the used laser ablation fluence on the target. It is shown that n of ~2000 nm thick ta-C films can be tuned, depending on the sp3-content, between n = 2.5 and 2.8 at a wavelength of 632 nm. Besides of this k reduces with the sp3-content and is as low as 0.03 at sp3-contents of more than 75%. We proof that this gives the opportunity to prepare coating with tailored optical properties. Furthermore, it is shown that the ta-C films have low background fluorescence in the wavelengths range of 380 - 750 nm, which make this thin films attractive for certain optical, medical and biotechnological applications. We present for the first time that one possible application is the use in Lab-on-a-Chip-systems (LOC). Within these systems, the ultrasensitive detection of fluorescence markers and dyes is a challenge. In order to increase the signal-to-noise-ratio, a setup was developed, that used the specific optical properties of ta-C films produced by PLD. We used the ta-C film as an integrated reflector that combined low background fluorescence, a low reflectivity at the excitation wavelength and the high reflectivity at the emission wavelength. We prove that this setup improves the detection of fluorescence photons.
文摘Compared with the sintered polycrystalline diamond, the deposited thin film diamond has the great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of their low costs for fabrication equipment and high performance on high speed machining non-ferrous metals and alloys, metal-compound materials, and hard brittle non-metals, diamond-coated drills find great potentialities in the commercial application. However, the poor adhesion of the diamond film on the substrate becomes the main technical barriers for the successful development and commercialization of diamond-coated tools. In this paper, diamond thin films were deposited on WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple chemical pre-treatment technology including microwave oxidation, reaction in alkaline solution and cleaning by ultrasonic treatment in acid solution was developed and affects on the diamond adhesion strength, nucleation and surface morphology were investigated. At the same time, a special setup to fabricate diamond-coated drills was also developed and then the novel CVD process based on the varied parameters controlling model was presented, therefore the uniform quality and homogenized thickness of diamond coating could be available. From practical utilization viewpoint, the cutting performance of the diamond-coated drill was studied by drilling SiC particle reinforced aluminum matrix composite. The satisfied wear resistance and decrease of torque and thrust led to the long life of this kind of drill. This paper exhibited the meaningful work for the development of cutting tools with complex geometries and further extended the application of diamond material.
基金Project supported by the National Natural Science Foundation of China.
文摘Blue electroluminescence of diamond thin film has already been investigated by some authors. To our knowledge, ultraviolet electroluminescence of diamond thin film has not been reported so far. We have prepared an electroluminescence device with
基金the support from the Scientific Research Fund of Hunan Provincial Education Department (09B084)the National Natural Science Foundation of China (20773150)
文摘Boron-doped diamond (BDD) thin films with different crystal grain sizes were prepared by controlling the reacting gas pressure using hot filament chemical vapor deposition (HFCVD).The morphologies and structures of the prepared diamond thin films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy.The electrochemical responses of K4Fe(CN)6 on different BDD electrodes were investigated.The results suggested that electron transfer was faster at the boron-doped nanocrystalline diamond (BDND) thin film electrodes in comparison with that at other BDD thin film electrodes.The prepared BDD thin film electrodes without any modification were used to directly detect glucose in the basic solution.The results showed that the as-prepared BDD thin film electrodes exhibited good selectivity for detecting glucose in the presence of ascorbic acid (AA) and uric acid (UA).The higher sensitivity was observed on the BDND thin film grown on the boron-doped microcrystalline diamond (BDMD) thin film surface,and the linear response range,sensitivity and the low detection limit were 0.25–10 mM,189.1 μA mmol-1 cm-2 and 25 μM (S/N=3) for glucose in the presence of AA and UA,respectively.
文摘Switching phenomena in some semiconductor wafers and thin films were observed early. However, to our knowledge, there is no report about the switching behaviour of diamond thin film. Because the diamond thin film possesses a great number of good properties, such as wide band gap, high breakdown voltage, high electron mobilities and high electron saturation velocity, the investigation on the switching behaviour of diamond thin film will be of great value for achieving high voltage and high power switching devices. We
文摘Diamond has extreme hardness and is a new type of multi-function material which has excellent electrical, optical, thermal and mechanical properties.Russian scientists Derjaguin et al. successfully synthesized diamond on nondiamond substrates by chemical transport reaction method in 1976. In 1982, Japanese sci-