Classification and reduction of the generalized fourth-order nonlinear differential equations arising from theliquid films are considered.It is shown that these equations have solutions on subspaces of the polynomial,...Classification and reduction of the generalized fourth-order nonlinear differential equations arising from theliquid films are considered.It is shown that these equations have solutions on subspaces of the polynomial,exponential ortrigonometric form defined by linear nth-order ordinary differential equations with constant coefficients for n=4,...,9.Several examples of exact solutions are presented.展开更多
The invariant sets and the solutions of the 1+2-dimensional generalized thin film equation are discussed. It is shown that there exists a class of solutions to the equations, which are invariant with respect to the se...The invariant sets and the solutions of the 1+2-dimensional generalized thin film equation are discussed. It is shown that there exists a class of solutions to the equations, which are invariant with respect to the set $$E_0 = \{ u:u_x = v_x F(u),u_y = v_y F(u)\} ,$$ where v is a smooth function of variables x, y and F is a smooth function of u. This extends the results of Galaktionov (2001) and for the 1+1-dimensional nonlinear evolution equations.展开更多
The authors study a generalized thin film equation. Under some assumptions on the initial value, the existence of weak solutions is established by the time-discrete method.The uniqueness and asymptotic behavior of sol...The authors study a generalized thin film equation. Under some assumptions on the initial value, the existence of weak solutions is established by the time-discrete method.The uniqueness and asymptotic behavior of solutions are also discussed.展开更多
A second order accurate(in time)numerical scheme is analyzed for the slope-selection(SS)equation of the epitaxial thin film growth model,with Fourier pseudo-spectral discretization in space.To make the numerical schem...A second order accurate(in time)numerical scheme is analyzed for the slope-selection(SS)equation of the epitaxial thin film growth model,with Fourier pseudo-spectral discretization in space.To make the numerical scheme linear while preserving the nonlinear energy stability,we make use of the scalar auxiliary variable(SAV)approach,in which a modified Crank-Nicolson is applied for the surface diffusion part.The energy stability could be derived a modified form,in comparison with the standard Crank-Nicolson approximation to the surface diffusion term.Such an energy stability leads to an H2 bound for the numerical solution.In addition,this H2 bound is not sufficient for the optimal rate convergence analysis,and we establish a uniform-in-time H3 bound for the numerical solution,based on the higher order Sobolev norm estimate,combined with repeated applications of discrete H¨older inequality and nonlinear embeddings in the Fourier pseudo-spectral space.This discrete H3 bound for the numerical solution enables us to derive the optimal rate error estimate for this alternate SAV method.A few numerical experiments are also presented,which confirm the efficiency and accuracy of the proposed scheme.展开更多
Let (M, g) be a complete non-compact Riemannian manifold without boundary. In this paper, we give the gradient estimates on positive solutions to the following elliptic equation with singular nonlinearity:△u(x)...Let (M, g) be a complete non-compact Riemannian manifold without boundary. In this paper, we give the gradient estimates on positive solutions to the following elliptic equation with singular nonlinearity:△u(x)+cu^-a=0 in M,where a 〉 0, c are two real constants. When c 〈 0 and M is a bounded smooth domain in R^n, the above equation is known as the thin film equation, which describes a steady state of the thin film (see Guo-Wei [Manuscripta Math., 120, 193-209 (2006)]). The results in this paper can be viewed as an supplement of that of J. Li [J. Funct. Anal., 100, 233-256 (1991)], where the nonlinearity is the positive power of u.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Northwest University Graduate Innovation and Creativity Funds under Grant No.07YZZ15
文摘Classification and reduction of the generalized fourth-order nonlinear differential equations arising from theliquid films are considered.It is shown that these equations have solutions on subspaces of the polynomial,exponential ortrigonometric form defined by linear nth-order ordinary differential equations with constant coefficients for n=4,...,9.Several examples of exact solutions are presented.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10671156)the Program for New Century Excellent Talents in Universities (Grant No. NCET-04-0968)
文摘The invariant sets and the solutions of the 1+2-dimensional generalized thin film equation are discussed. It is shown that there exists a class of solutions to the equations, which are invariant with respect to the set $$E_0 = \{ u:u_x = v_x F(u),u_y = v_y F(u)\} ,$$ where v is a smooth function of variables x, y and F is a smooth function of u. This extends the results of Galaktionov (2001) and for the 1+1-dimensional nonlinear evolution equations.
基金Project supported by the 973 Project of the Ministry of Science and Technology of China and the National Natural Science Foundation of China (No.10125107)
文摘The authors study a generalized thin film equation. Under some assumptions on the initial value, the existence of weak solutions is established by the time-discrete method.The uniqueness and asymptotic behavior of solutions are also discussed.
文摘A second order accurate(in time)numerical scheme is analyzed for the slope-selection(SS)equation of the epitaxial thin film growth model,with Fourier pseudo-spectral discretization in space.To make the numerical scheme linear while preserving the nonlinear energy stability,we make use of the scalar auxiliary variable(SAV)approach,in which a modified Crank-Nicolson is applied for the surface diffusion part.The energy stability could be derived a modified form,in comparison with the standard Crank-Nicolson approximation to the surface diffusion term.Such an energy stability leads to an H2 bound for the numerical solution.In addition,this H2 bound is not sufficient for the optimal rate convergence analysis,and we establish a uniform-in-time H3 bound for the numerical solution,based on the higher order Sobolev norm estimate,combined with repeated applications of discrete H¨older inequality and nonlinear embeddings in the Fourier pseudo-spectral space.This discrete H3 bound for the numerical solution enables us to derive the optimal rate error estimate for this alternate SAV method.A few numerical experiments are also presented,which confirm the efficiency and accuracy of the proposed scheme.
基金Partly supported by National Natural Science Foundation of China (Grant Nos. 1060106, 10811120558) the program for NCET
文摘Let (M, g) be a complete non-compact Riemannian manifold without boundary. In this paper, we give the gradient estimates on positive solutions to the following elliptic equation with singular nonlinearity:△u(x)+cu^-a=0 in M,where a 〉 0, c are two real constants. When c 〈 0 and M is a bounded smooth domain in R^n, the above equation is known as the thin film equation, which describes a steady state of the thin film (see Guo-Wei [Manuscripta Math., 120, 193-209 (2006)]). The results in this paper can be viewed as an supplement of that of J. Li [J. Funct. Anal., 100, 233-256 (1991)], where the nonlinearity is the positive power of u.