Cadmium sulphide (CdS) thin films were deposited on glass substrates by the chemical bath deposition (CBD) method, using anhydrous cadmium chloride (CdCl2) and thiourea (CS(NH2)2) as sources of cadmium and sulphur ion...Cadmium sulphide (CdS) thin films were deposited on glass substrates by the chemical bath deposition (CBD) method, using anhydrous cadmium chloride (CdCl2) and thiourea (CS(NH2)2) as sources of cadmium and sulphur ions respectively. The influence of bath temperature (Tb), deposition time (td) aSnd [S]/[Cd] ratio in the solution on the structural, morphological, chemical composition and optical properties of these films were investigated. XRD studies revealed that all the deposited films were polycrystalline with hexagonal structure and exhibited (002) preferential orientation. The films deposited under optimum conditions (Tb = 75?C, td = 60 min and [S]/[Cd] ratio = 2.5) were relatively well crystallized. These films showed large final thickness and their surface morphologies were composed of small grains with an approximate size of 20 to 30 nm and grains grouped together to form large clusters. EDAX analysis revealed that these films were nonstoichiometric with a slight sulphur deficiency. These films exhibited also a transmittance value about 80% in the visible and infra red range.展开更多
Thin films of Cobalt(II) Oxide were deposited from equimolar concentrations of Cobalt Chloride, and Hexamethylenetetramine on clean glass substrates using the Aqueous Chemical Growth method in order to determine the e...Thin films of Cobalt(II) Oxide were deposited from equimolar concentrations of Cobalt Chloride, and Hexamethylenetetramine on clean glass substrates using the Aqueous Chemical Growth method in order to determine the effect of precursor concentration on their optical and solid state properties. The analytical tools used for the study include, Rutherford Back Scattering (RBS) spectroscopy for elemental analysis and determination of film thickness, X-Ray Difftraction (XRD) for crystallographic structure, a UV-VIS spectrophotometer for optical and other solid state properties and a photomicroscope for photomicrographs. The results indicate that an increase in the concentration of precursor materials makes ACG CoO thin film a better absorber of ultraviolet radiation, a better transmitter of infra-red radiation, a reflector of visible radiation and a material having an increased band gap. The ACG CoO thin film deposited from 0.1 M precursor concentration was found to be a suitable material for the construction of thermographic devices, poultry houses etc. It can also serve as window layer in solar cells among other optoelectronic applications.展开更多
Au nanoparticles dispersed NiO composite films were prepared by a chemical solution method.The phase structure,microstructure,surface chemical state,and optical absorption properties of the films were characterized by...Au nanoparticles dispersed NiO composite films were prepared by a chemical solution method.The phase structure,microstructure,surface chemical state,and optical absorption properties of the films were characterized by X-ray diffraction,transmission electron microscopy,X-ray photoelectron spectroscopy,and Uv-vis spectrometer.The results indicate that Au particles with the average diameters of 35-42 nm are approximately spherical and disperse in the NiO matrix.The optical absorption peaks due to the surface plasmon resonance of Au particles shift to the shorter wavelength and intensify with the increase of Au content.The bandwidth narrows when the Au content increases from 8.4wt% to 45.2wt%,but widens by further increasing the Au content from 45.2wt% to 60.5wt%.The band gap Eg increases with the increase of Au contents from 8.4wt% to 45.2wt%,but decreases by further increasing the Au content.展开更多
Monodisperse zinc phosphate microspheres were synthesized by a facile solvothermal method in the presence of oleic acid.X-ray powder diffraction(XRD),Fourier transform infrared spectrum(FT-IR),emission scanning el...Monodisperse zinc phosphate microspheres were synthesized by a facile solvothermal method in the presence of oleic acid.X-ray powder diffraction(XRD),Fourier transform infrared spectrum(FT-IR),emission scanning electron microscopy(SEM),and energy dispersive X-ray spectrum(EDX) were used to characterize the microstructures and morphologies of the as-obtained zinc phosphate samples.The experimental results indicate that the zinc phosphate products are well crystallized,and the morphologies of the samples can be easily controlled by the elaborate choice of oleic acid addition and the content of NaOH.Furthermore,self-activated luminescent properties of the products are observed.The as-obtained samples show an intense blue emission under a long-wavelength UV light excitation of 400 nm.The possible luminescent mechanism may be ascribed to the carbon-related surface impurities or defects.展开更多
Diamond-like carbon (DLC) thin film is one of the most widely used optical thin films. The fraction of chemical bondings has a great influence on the properties of the DLC film. In this work, DLC thin films are prep...Diamond-like carbon (DLC) thin film is one of the most widely used optical thin films. The fraction of chemical bondings has a great influence on the properties of the DLC film. In this work, DLC thin films are prepared by ion-beam sputtering deposition in Ar and CH4 mixtures with graphite as the target. The influences of the ion-beam voltage on the surface morphology, chemical structure, mechanical and infrared optical properties of the DLC films are investigated by atomic force microscopy (AFM), Raman spectroscopy, nanoindentation, and Fourier transform infrared (FTIR) spec- troscopy, respectively. The results show that the surface of the film is uniform and smooth. The film contains sp2 and sp3 hybridized carbon bondings. The film prepared by lower ion beam voltage has a higher sp3 bonding content. It is found that the hardness of DLC films increases with reducing ion-beam voltage, which can be attributed to an increase in the fraction of sp3 carbon bondings in the DLC film. The optical constants can be obtained by the whole infrared optical spectrum fitting with the transmittance spectrum. The refractive index increases with the decrease of the ion-beam voltage, while the extinction coefficient decreases.展开更多
Cobalt isopropyl xanthate thin films (CXTFs) were deposited via chemical bath deposition onto different substrates:commercial glass (CG), indium tin oxide (ITO), and poly(methyl methacrylate) (PMM). Isoprop...Cobalt isopropyl xanthate thin films (CXTFs) were deposited via chemical bath deposition onto different substrates:commercial glass (CG), indium tin oxide (ITO), and poly(methyl methacrylate) (PMM). Isopropyl xanthate was synthesized according to a method described in the literature. The cobalt nitrate and isopropyl xanthate were mixed in a beaker, which allowed the thin films to be deposited via a simple ion-ion mechanism. The transmission, reflectivity, refractive index, dielectric constant, and optical conductivity were investigated for various thin films coated onto different substrates. An ultraviolet-visible spectrophotometer was used to measure the optical properties of the thin films. The lowest value of the transmission and the highest value of the refractive index were observed for the thin films deposited onto PMM. The structure of the cobalt xanthate was characterized by Fourier transform infrared (FTIR) spectroscopy, which was measured using a Perkin-Elmer Spectrum 400 spectrometer. The stretching vibration of the Co-S bonds was observed at 359 cm^-1 in the FTIR spectrum of the CXTFs.展开更多
Hafnium oxide thin films (HOTFs) were successfully deposited onto amorphous glasses using chemical bath deposition, successive ionic layer absorption and reaction (SILAR), and sol-gel methods. The same reactive pr...Hafnium oxide thin films (HOTFs) were successfully deposited onto amorphous glasses using chemical bath deposition, successive ionic layer absorption and reaction (SILAR), and sol-gel methods. The same reactive precursors were used for all of the methods, and all of the films were annealed at 300℃ in an oven (ambient conditions). After this step, the optical and structural properties of the films produced by using the three different methods were compared. The structures of the films were analyzed by X-ray diffTaction (XRD). The optical properties are investigated using the ultraviolet-visible (UV-VIS) spectroscopic technique. The film thickness was measured via atomic force microscopy (AFM) in the tapping mode. The surface properties and elemental ratios of the films were investigated and measured by scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). The lowest transmittance and the highest reflectance values were observed for the films produced using the SILAR method. In addition, the most intense characteristic XRD peak was observed in the diffraction pattern of the film produced using the SILAR method, and the greatest thickness and average grain size were calculated for the film produced using the SILAR method. The films produced using SILAR method contained fewer cracks than those produced using the other methods. In conclusion, the SILAR method was observed to be the best method for the production of HOTFs.展开更多
In this paper, we report the preparation of nickel phosphate in aqueous solution and its use as inorganic pigment. Because cerium phosphate is insoluble in acidic and basic solution, the addition of cerium was tried t...In this paper, we report the preparation of nickel phosphate in aqueous solution and its use as inorganic pigment. Because cerium phosphate is insoluble in acidic and basic solution, the addition of cerium was tried to improve the acid and base resistance of nickel phosphate pigment. The cerium substituted nickel phosphates were prepared from phosphoric acid, nickel nitrate, and ammonium cerium nitrate solution. The additional effects of tetravalent cerium cation were studied on the chemical composition, particle shape and size distribution, specific surface area, color, acid and base resistance of the precipitates and their thermal products.展开更多
Tin monosulphide(SnS) thin films capped by PVA have been successfully deposited on glass substrates for cost effective photovoltaic device applications by a simple and low-cost wet chemical process, chemical bath depo...Tin monosulphide(SnS) thin films capped by PVA have been successfully deposited on glass substrates for cost effective photovoltaic device applications by a simple and low-cost wet chemical process, chemical bath deposition(CBD) at different bath temperatures varying in the range, 50–80 °C. X–ray diffraction analysis showed that the deposited films were polycrystalline in nature, showing orthorhombic structure with an intense peak corresponding to(040) plane of SnS. These observations were further confirmed by Raman analysis. FTIR spectra showed the absorption bands which corresponds to PVA in addition to SnS.The scanning electron microscopy and atomic force microscopy studies revealed that the deposited SnS films were uniform and nanostructured with an average particle size of 4.9 to 7.6 nm. The optical investigations showed that the layers were highly absorbing with the optical absorption coefficient ~10~5 cm^(-1). A decrease in optical band gap from 1.92 to 1.55 eV with an increase of bath temperature was observed. The observed band gap values were higher than the bulk value of 1.3 eV, which might be due to quantum confinement effect. The optical band gap values were also used to calculate particle size and the results are discussed.展开更多
In this work, we propose a method to synthesize vanadium (IV) 2-benzyli-dene-1-indanone derivatives, used to prepare film structures by thermal evaporation. The complexes possess high melting point allowing the using ...In this work, we propose a method to synthesize vanadium (IV) 2-benzyli-dene-1-indanone derivatives, used to prepare film structures by thermal evaporation. The complexes possess high melting point allowing the using of vacuum deposition methods. All the samples were grown at room temperature (25℃) and low deposition rates (0.4 Å/s). The surface morphology and structure of the deposited films were studied by scanning electron microscopy (SEM) and spectroscopy dispersive energy (EDS). Optical absorption studies of the complex films were performed in the 200 - 1100 nm wavelength range. The Tauc band gap (Eg) of the thin films was determined from the (αhν)1/2 vs. hν plots for indirect transitions. The vanadium (IV) complex films show optical activation energies in the range of organic semiconductors. Multilayer nylon 11/vanadium indanone devices were fabricated using ITO and silver electrodes. The d.c. electrical properties of the device were also investigated. It was found that the temperature-dependent electric current in the structure showed a semiconductor behavior. At lower voltages below 7 V, the current density in the forward direction was found to obey an ohmic I-V relationship;for higher voltages above 7 V, the conduction was dominated by a space-charge-limited (SCLC) mechanism. The electrical activation energies (Ea) of the complexes were in the 2.17 - 2.31 eV range.展开更多
The plasma-enhanced chemical vapor deposition(PECVD)technique is well suited for fabricating optical filters with continuously variable refractive index profiles;however,it is not clear how the optical and structural ...The plasma-enhanced chemical vapor deposition(PECVD)technique is well suited for fabricating optical filters with continuously variable refractive index profiles;however,it is not clear how the optical and structural properties of thin films differ when deposited on different substrates.Herein,silicon nitride films were deposited on silicon,fused silica,and glass substrates by PECVD,using silane and ammonia,to investigate the effects of the substrate used on the optical properties and structures of the films.All of the deposited films were amorphous.Further,the types and amounts of Si-centered tetrahedral Si–SivN4-v bonds formed were based upon the substrates used;Si–N4 bonds with higher elemental nitrogen content were formed on Si substrates,which lead to obtaining higher refractive indices,and the Si–SiN3 bonds were mainly formed on glass and fused silica substrates.The refractive indices of the films formed on the different substrates had a maximum difference of0.05(at 550 nm),the refractive index of SiNx films formed on silicon substrates was 1.83,and the refractive indices of films formed on glass were very close to those formed on fused silica.The deposition rates of these SiNx films are similar,and the extinction coefficients of all the films were lower than 10-4.展开更多
1 INTRODUCTIONStannic oxide as a wide-band gap semiconductor(Eg≈3.5eV),has high transparency in thevisible spectral region(index of refraction,n≈1.9)and resistance to acids and bases at roomtemperature.The SnO&l...1 INTRODUCTIONStannic oxide as a wide-band gap semiconductor(Eg≈3.5eV),has high transparency in thevisible spectral region(index of refraction,n≈1.9)and resistance to acids and bases at roomtemperature.The SnO<sub>2</sub> thin film.the most useful form in application,has been prepared by avariety of physical and chemical deposition processes.It has been found that undoped SnO<sub>2</sub>films have high resistivity(about 10<sup>8--15</sup>Ω·cm)at room temperature[1].For manyapplications requiring not too low sheet resistance。展开更多
In this paper, we report the substrate temperature induced change in structural, optical, morphological,luminescence and photoelectrochemical properties of CdS films deposited by a simple and facile approach called ne...In this paper, we report the substrate temperature induced change in structural, optical, morphological,luminescence and photoelectrochemical properties of CdS films deposited by a simple and facile approach called nebulized spray pyrolysis technique. X-ray diffraction study confirmed the deposited CdS films belong to hexagonal wurtzite structure, with preferential orientation along c-axis,(002) direction perpendicular to the substrate plane. The crack free, uniform, and homogeneously distributed spherical particles are witnessed from AFM image. Various optical parameters like energy band gap, optical conductivity,refractive index, extinction coefficient, dielectric constants, and dispersion energy parameters of the films were evaluated. The strong band edge emission observed in the PL study may be attributed to the recombination of excitations and/or shallowly trapped electron-hole pairs. The first and second overtone of LO modes of CdS at 302 and 600 cm-1are observed in the Raman study. The photoelectrochemical properties of the films were also tested.展开更多
Radio Frequency plasma enhanced Chemical Vapor Deposition (RF CVD) using N2, SiH4 and C2H4 as the reaction sources was used to prepare amorphous ternary Si x C y N z thin films. The chemical states of the C, Si and N...Radio Frequency plasma enhanced Chemical Vapor Deposition (RF CVD) using N2, SiH4 and C2H4 as the reaction sources was used to prepare amorphous ternary Si x C y N z thin films. The chemical states of the C, Si and N atoms in the films were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR). The refractive indexn, extinction coefficientk and optical band gapE opt of the thin films were investigated by UV-visible spectrophotometer and spectroscopic ellipsometer. The results show that a complex chemical bonding network rather than a simple mixture of Si3N4, SiC, CN x and a-C etc., may exist in the ternary thin films. Then's of the films are within the range of 1. 90–2. 45, andE opt's of all samples are within the range of 2. 71–2. 86 eV.展开更多
CdS films were prepared with chemical pyrolysis deposition (CPD) at 450℃ during film growth, and these CdS films were also annealed at different temperature from 200-500℃.The optical property of the CdS films before...CdS films were prepared with chemical pyrolysis deposition (CPD) at 450℃ during film growth, and these CdS films were also annealed at different temperature from 200-500℃.The optical property of the CdS films before and after annealing was investigated at different measuring temperature from 10K to 300K. Optical absorption spectra show that the absorption edge is towards the shorter wavelengths, and the energy band gaps deduced from the plots of (α·hν) 2 vs. hν are increased when the measuring temperature is decreased. The optical behaviors of the CdS films annealed at a certain temperature seem to have the similar tendency at different measuring temperature. Based on dE- ex/dT curve dependent on annealing temperature, some phenomena related microstructure in CdS films could be found.展开更多
Undoped and copper doped zinc oxide (ZnO) thin films have been prepared on glass substrates by spray pyrolysis technique. The films were doped with copper using the direct method by addition of a copper salt (CuCl2...Undoped and copper doped zinc oxide (ZnO) thin films have been prepared on glass substrates by spray pyrolysis technique. The films were doped with copper using the direct method by addition of a copper salt (CuCl2) in the spray solution of ZnO. Variation of structural, electrical, optical and thermoluminescence (TL) properties with doping concentrations is investigated in detail.展开更多
The chemical structures, optical properties and laser-induced damage thresholds of magnesium fluoride films annealed at different temperatures were investigated. The results showed that the stoichiometry of MgF2 film ...The chemical structures, optical properties and laser-induced damage thresholds of magnesium fluoride films annealed at different temperatures were investigated. The results showed that the stoichiometry of MgF2 film changed a little with the increase in annealing temperature. Analysis of the optical properties indicated that excellent antireflection behavior of the film in the range of 200-400 nm can be obtained by the samples coated with MgF2 film. The refractive index increased and the extinction coefficient decreased with increasing annealing temperature. Compared with the asdeposited films, the laser-induced damage threshold was improved after annealing process and decreased with the increase in annealing temperature, which was probably due to the denser film and more absorption centers under higher annealing temperature.展开更多
Quaternary chalcogenide Cu2FeSnS4 (CFTS) nanoparticles, as a kind of potential absorber layer material in thin film solar cells (TFSCs), were successfully synthesized by using a convenient solvothermal method. Alk...Quaternary chalcogenide Cu2FeSnS4 (CFTS) nanoparticles, as a kind of potential absorber layer material in thin film solar cells (TFSCs), were successfully synthesized by using a convenient solvothermal method. Alkali element K is incorporated into CFTS thin films in order to fiLrther improve the surface morphology and the optical properties of related films. X-ray diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FESEM) were used to characterize the phase purity, morphology and composition of CFTS particles and thin films. The results show that the particle elemental ratios of Cu/(Fe+Sn) and Fe/Sn are 1.2 and 0.9, respectively, which are close to the characteristics of stoichiometric CFTS. The band gaps of CFTS films before and after doping K ions are estimated to be 1.44 eV and 1.4 eV with an error of ±0.02 eV.展开更多
文摘Cadmium sulphide (CdS) thin films were deposited on glass substrates by the chemical bath deposition (CBD) method, using anhydrous cadmium chloride (CdCl2) and thiourea (CS(NH2)2) as sources of cadmium and sulphur ions respectively. The influence of bath temperature (Tb), deposition time (td) aSnd [S]/[Cd] ratio in the solution on the structural, morphological, chemical composition and optical properties of these films were investigated. XRD studies revealed that all the deposited films were polycrystalline with hexagonal structure and exhibited (002) preferential orientation. The films deposited under optimum conditions (Tb = 75?C, td = 60 min and [S]/[Cd] ratio = 2.5) were relatively well crystallized. These films showed large final thickness and their surface morphologies were composed of small grains with an approximate size of 20 to 30 nm and grains grouped together to form large clusters. EDAX analysis revealed that these films were nonstoichiometric with a slight sulphur deficiency. These films exhibited also a transmittance value about 80% in the visible and infra red range.
文摘Thin films of Cobalt(II) Oxide were deposited from equimolar concentrations of Cobalt Chloride, and Hexamethylenetetramine on clean glass substrates using the Aqueous Chemical Growth method in order to determine the effect of precursor concentration on their optical and solid state properties. The analytical tools used for the study include, Rutherford Back Scattering (RBS) spectroscopy for elemental analysis and determination of film thickness, X-Ray Difftraction (XRD) for crystallographic structure, a UV-VIS spectrophotometer for optical and other solid state properties and a photomicroscope for photomicrographs. The results indicate that an increase in the concentration of precursor materials makes ACG CoO thin film a better absorber of ultraviolet radiation, a better transmitter of infra-red radiation, a reflector of visible radiation and a material having an increased band gap. The ACG CoO thin film deposited from 0.1 M precursor concentration was found to be a suitable material for the construction of thermographic devices, poultry houses etc. It can also serve as window layer in solar cells among other optoelectronic applications.
基金supported by the Major State Basic Research Development Program of China(No.2007CB613301)the National Natural Science Foundation of China(Nos.50842028 and 50972012)
文摘Au nanoparticles dispersed NiO composite films were prepared by a chemical solution method.The phase structure,microstructure,surface chemical state,and optical absorption properties of the films were characterized by X-ray diffraction,transmission electron microscopy,X-ray photoelectron spectroscopy,and Uv-vis spectrometer.The results indicate that Au particles with the average diameters of 35-42 nm are approximately spherical and disperse in the NiO matrix.The optical absorption peaks due to the surface plasmon resonance of Au particles shift to the shorter wavelength and intensify with the increase of Au content.The bandwidth narrows when the Au content increases from 8.4wt% to 45.2wt%,but widens by further increasing the Au content from 45.2wt% to 60.5wt%.The band gap Eg increases with the increase of Au contents from 8.4wt% to 45.2wt%,but decreases by further increasing the Au content.
基金Project(21101013) supported by the National Natural Science Foundation of ChinaProjects(FRF-SD-13-002B,FRF-BR-09-004A) supported by the Fundamental Research Funds for the Central Universities,China
文摘Monodisperse zinc phosphate microspheres were synthesized by a facile solvothermal method in the presence of oleic acid.X-ray powder diffraction(XRD),Fourier transform infrared spectrum(FT-IR),emission scanning electron microscopy(SEM),and energy dispersive X-ray spectrum(EDX) were used to characterize the microstructures and morphologies of the as-obtained zinc phosphate samples.The experimental results indicate that the zinc phosphate products are well crystallized,and the morphologies of the samples can be easily controlled by the elaborate choice of oleic acid addition and the content of NaOH.Furthermore,self-activated luminescent properties of the products are observed.The as-obtained samples show an intense blue emission under a long-wavelength UV light excitation of 400 nm.The possible luminescent mechanism may be ascribed to the carbon-related surface impurities or defects.
基金Project supported by the National Natural Science Foundation of China(Grant No.61235011)the Science Foundation of the Science and Technology Commission of Tianjin Municipality,China(Grant Nos.13JCYBJC17300 and 12JCQNIC01200)
文摘Diamond-like carbon (DLC) thin film is one of the most widely used optical thin films. The fraction of chemical bondings has a great influence on the properties of the DLC film. In this work, DLC thin films are prepared by ion-beam sputtering deposition in Ar and CH4 mixtures with graphite as the target. The influences of the ion-beam voltage on the surface morphology, chemical structure, mechanical and infrared optical properties of the DLC films are investigated by atomic force microscopy (AFM), Raman spectroscopy, nanoindentation, and Fourier transform infrared (FTIR) spec- troscopy, respectively. The results show that the surface of the film is uniform and smooth. The film contains sp2 and sp3 hybridized carbon bondings. The film prepared by lower ion beam voltage has a higher sp3 bonding content. It is found that the hardness of DLC films increases with reducing ion-beam voltage, which can be attributed to an increase in the fraction of sp3 carbon bondings in the DLC film. The optical constants can be obtained by the whole infrared optical spectrum fitting with the transmittance spectrum. The refractive index increases with the decrease of the ion-beam voltage, while the extinction coefficient decreases.
文摘Cobalt isopropyl xanthate thin films (CXTFs) were deposited via chemical bath deposition onto different substrates:commercial glass (CG), indium tin oxide (ITO), and poly(methyl methacrylate) (PMM). Isopropyl xanthate was synthesized according to a method described in the literature. The cobalt nitrate and isopropyl xanthate were mixed in a beaker, which allowed the thin films to be deposited via a simple ion-ion mechanism. The transmission, reflectivity, refractive index, dielectric constant, and optical conductivity were investigated for various thin films coated onto different substrates. An ultraviolet-visible spectrophotometer was used to measure the optical properties of the thin films. The lowest value of the transmission and the highest value of the refractive index were observed for the thin films deposited onto PMM. The structure of the cobalt xanthate was characterized by Fourier transform infrared (FTIR) spectroscopy, which was measured using a Perkin-Elmer Spectrum 400 spectrometer. The stretching vibration of the Co-S bonds was observed at 359 cm^-1 in the FTIR spectrum of the CXTFs.
文摘Hafnium oxide thin films (HOTFs) were successfully deposited onto amorphous glasses using chemical bath deposition, successive ionic layer absorption and reaction (SILAR), and sol-gel methods. The same reactive precursors were used for all of the methods, and all of the films were annealed at 300℃ in an oven (ambient conditions). After this step, the optical and structural properties of the films produced by using the three different methods were compared. The structures of the films were analyzed by X-ray diffTaction (XRD). The optical properties are investigated using the ultraviolet-visible (UV-VIS) spectroscopic technique. The film thickness was measured via atomic force microscopy (AFM) in the tapping mode. The surface properties and elemental ratios of the films were investigated and measured by scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). The lowest transmittance and the highest reflectance values were observed for the films produced using the SILAR method. In addition, the most intense characteristic XRD peak was observed in the diffraction pattern of the film produced using the SILAR method, and the greatest thickness and average grain size were calculated for the film produced using the SILAR method. The films produced using SILAR method contained fewer cracks than those produced using the other methods. In conclusion, the SILAR method was observed to be the best method for the production of HOTFs.
文摘In this paper, we report the preparation of nickel phosphate in aqueous solution and its use as inorganic pigment. Because cerium phosphate is insoluble in acidic and basic solution, the addition of cerium was tried to improve the acid and base resistance of nickel phosphate pigment. The cerium substituted nickel phosphates were prepared from phosphoric acid, nickel nitrate, and ammonium cerium nitrate solution. The additional effects of tetravalent cerium cation were studied on the chemical composition, particle shape and size distribution, specific surface area, color, acid and base resistance of the precipitates and their thermal products.
文摘Tin monosulphide(SnS) thin films capped by PVA have been successfully deposited on glass substrates for cost effective photovoltaic device applications by a simple and low-cost wet chemical process, chemical bath deposition(CBD) at different bath temperatures varying in the range, 50–80 °C. X–ray diffraction analysis showed that the deposited films were polycrystalline in nature, showing orthorhombic structure with an intense peak corresponding to(040) plane of SnS. These observations were further confirmed by Raman analysis. FTIR spectra showed the absorption bands which corresponds to PVA in addition to SnS.The scanning electron microscopy and atomic force microscopy studies revealed that the deposited SnS films were uniform and nanostructured with an average particle size of 4.9 to 7.6 nm. The optical investigations showed that the layers were highly absorbing with the optical absorption coefficient ~10~5 cm^(-1). A decrease in optical band gap from 1.92 to 1.55 eV with an increase of bath temperature was observed. The observed band gap values were higher than the bulk value of 1.3 eV, which might be due to quantum confinement effect. The optical band gap values were also used to calculate particle size and the results are discussed.
文摘In this work, we propose a method to synthesize vanadium (IV) 2-benzyli-dene-1-indanone derivatives, used to prepare film structures by thermal evaporation. The complexes possess high melting point allowing the using of vacuum deposition methods. All the samples were grown at room temperature (25℃) and low deposition rates (0.4 Å/s). The surface morphology and structure of the deposited films were studied by scanning electron microscopy (SEM) and spectroscopy dispersive energy (EDS). Optical absorption studies of the complex films were performed in the 200 - 1100 nm wavelength range. The Tauc band gap (Eg) of the thin films was determined from the (αhν)1/2 vs. hν plots for indirect transitions. The vanadium (IV) complex films show optical activation energies in the range of organic semiconductors. Multilayer nylon 11/vanadium indanone devices were fabricated using ITO and silver electrodes. The d.c. electrical properties of the device were also investigated. It was found that the temperature-dependent electric current in the structure showed a semiconductor behavior. At lower voltages below 7 V, the current density in the forward direction was found to obey an ohmic I-V relationship;for higher voltages above 7 V, the conduction was dominated by a space-charge-limited (SCLC) mechanism. The electrical activation energies (Ea) of the complexes were in the 2.17 - 2.31 eV range.
基金supported by the Project of Innovative Team of Advanced Optical Manufacturing and Detection(No.2017KCT-08-02)。
文摘The plasma-enhanced chemical vapor deposition(PECVD)technique is well suited for fabricating optical filters with continuously variable refractive index profiles;however,it is not clear how the optical and structural properties of thin films differ when deposited on different substrates.Herein,silicon nitride films were deposited on silicon,fused silica,and glass substrates by PECVD,using silane and ammonia,to investigate the effects of the substrate used on the optical properties and structures of the films.All of the deposited films were amorphous.Further,the types and amounts of Si-centered tetrahedral Si–SivN4-v bonds formed were based upon the substrates used;Si–N4 bonds with higher elemental nitrogen content were formed on Si substrates,which lead to obtaining higher refractive indices,and the Si–SiN3 bonds were mainly formed on glass and fused silica substrates.The refractive indices of the films formed on the different substrates had a maximum difference of0.05(at 550 nm),the refractive index of SiNx films formed on silicon substrates was 1.83,and the refractive indices of films formed on glass were very close to those formed on fused silica.The deposition rates of these SiNx films are similar,and the extinction coefficients of all the films were lower than 10-4.
基金Supported by the National Natural Science Foundation of China
文摘1 INTRODUCTIONStannic oxide as a wide-band gap semiconductor(Eg≈3.5eV),has high transparency in thevisible spectral region(index of refraction,n≈1.9)and resistance to acids and bases at roomtemperature.The SnO<sub>2</sub> thin film.the most useful form in application,has been prepared by avariety of physical and chemical deposition processes.It has been found that undoped SnO<sub>2</sub>films have high resistivity(about 10<sup>8--15</sup>Ω·cm)at room temperature[1].For manyapplications requiring not too low sheet resistance。
基金University Grants Commission(UGC),New Delhi,India for the financial support under UGC-BSR Research Fellowship SchemeUGC,New Delhi,India for the financial support under Major Research Project(Ref.:F.No.42-818/2013(SR),dt.22.03.2013)
文摘In this paper, we report the substrate temperature induced change in structural, optical, morphological,luminescence and photoelectrochemical properties of CdS films deposited by a simple and facile approach called nebulized spray pyrolysis technique. X-ray diffraction study confirmed the deposited CdS films belong to hexagonal wurtzite structure, with preferential orientation along c-axis,(002) direction perpendicular to the substrate plane. The crack free, uniform, and homogeneously distributed spherical particles are witnessed from AFM image. Various optical parameters like energy band gap, optical conductivity,refractive index, extinction coefficient, dielectric constants, and dispersion energy parameters of the films were evaluated. The strong band edge emission observed in the PL study may be attributed to the recombination of excitations and/or shallowly trapped electron-hole pairs. The first and second overtone of LO modes of CdS at 302 and 600 cm-1are observed in the Raman study. The photoelectrochemical properties of the films were also tested.
基金the National Natural Science Foundation of China (19975 0 3 5 )
文摘Radio Frequency plasma enhanced Chemical Vapor Deposition (RF CVD) using N2, SiH4 and C2H4 as the reaction sources was used to prepare amorphous ternary Si x C y N z thin films. The chemical states of the C, Si and N atoms in the films were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR). The refractive indexn, extinction coefficientk and optical band gapE opt of the thin films were investigated by UV-visible spectrophotometer and spectroscopic ellipsometer. The results show that a complex chemical bonding network rather than a simple mixture of Si3N4, SiC, CN x and a-C etc., may exist in the ternary thin films. Then's of the films are within the range of 1. 90–2. 45, andE opt's of all samples are within the range of 2. 71–2. 86 eV.
文摘CdS films were prepared with chemical pyrolysis deposition (CPD) at 450℃ during film growth, and these CdS films were also annealed at different temperature from 200-500℃.The optical property of the CdS films before and after annealing was investigated at different measuring temperature from 10K to 300K. Optical absorption spectra show that the absorption edge is towards the shorter wavelengths, and the energy band gaps deduced from the plots of (α·hν) 2 vs. hν are increased when the measuring temperature is decreased. The optical behaviors of the CdS films annealed at a certain temperature seem to have the similar tendency at different measuring temperature. Based on dE- ex/dT curve dependent on annealing temperature, some phenomena related microstructure in CdS films could be found.
文摘Undoped and copper doped zinc oxide (ZnO) thin films have been prepared on glass substrates by spray pyrolysis technique. The films were doped with copper using the direct method by addition of a copper salt (CuCl2) in the spray solution of ZnO. Variation of structural, electrical, optical and thermoluminescence (TL) properties with doping concentrations is investigated in detail.
基金financially supported by the Research Fund of the State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,China(Grant No.155-QP-2016)the Fundamental Research Funds for the Central Universities(No.3102014JCQ01032)the 111 Project(No.B08040)
文摘The chemical structures, optical properties and laser-induced damage thresholds of magnesium fluoride films annealed at different temperatures were investigated. The results showed that the stoichiometry of MgF2 film changed a little with the increase in annealing temperature. Analysis of the optical properties indicated that excellent antireflection behavior of the film in the range of 200-400 nm can be obtained by the samples coated with MgF2 film. The refractive index increased and the extinction coefficient decreased with increasing annealing temperature. Compared with the asdeposited films, the laser-induced damage threshold was improved after annealing process and decreased with the increase in annealing temperature, which was probably due to the denser film and more absorption centers under higher annealing temperature.
基金supported by National Natural Science Foundation of China(No.51674026)the Fundamental Research Funds for the Central Universities in 2015(No.FRF-BD-15-004A)
文摘Quaternary chalcogenide Cu2FeSnS4 (CFTS) nanoparticles, as a kind of potential absorber layer material in thin film solar cells (TFSCs), were successfully synthesized by using a convenient solvothermal method. Alkali element K is incorporated into CFTS thin films in order to fiLrther improve the surface morphology and the optical properties of related films. X-ray diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FESEM) were used to characterize the phase purity, morphology and composition of CFTS particles and thin films. The results show that the particle elemental ratios of Cu/(Fe+Sn) and Fe/Sn are 1.2 and 0.9, respectively, which are close to the characteristics of stoichiometric CFTS. The band gaps of CFTS films before and after doping K ions are estimated to be 1.44 eV and 1.4 eV with an error of ±0.02 eV.