期刊文献+
共找到544篇文章
< 1 2 28 >
每页显示 20 50 100
Dynamic Calibration of the Cutting Temperature Sensor of NiCr/NiSi Thin-film Thermocouple 被引量:16
1
作者 CUI Yunxian YANG Deshun +2 位作者 JIA Ying ZENG Qiyong SUN Baoyuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期73-77,共5页
In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring... In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring transient temperature accurately of cutting area on account of low response speed and limited cutting condition. In this paper, NiCr/NiSi thin-film thermocouples(TFTCs) are fabricated according to temperature characteristic of cutting area in high-speed cutting by means of advanced twinned microwave electro cyclotron resonance(MW-ECR) plasma source enhanced radio frequency(RF) reaction non-balance magnetron sputtering technique, and can be used for transient cutting temperature measurement. The time constants of the TFTCs with different thermo-junction film width are measured at four kinds of sampling frequency by using Ultra-CFR short pulsed laser system that established. One-dimensional unsteady heat conduction model is constructed and the dynamic performance is analyzed theoretically. It can be seen from the analysis results that the NiCr/NiSi TFTCs are suitable for measuring transient temperature which varies quickly, the response speed of TFTCs can be obviously improved by reducing the thickness of thin-film, and the area of thermo-junction has little influence on dynamic response time. The dynamic calibration experiments are made on the constructed dynamic calibration system, and the experimental results confirm that sampling frequency should be larger than 50 kHz in dynamic measurement for stable response time, and the shortest response time is 0.042 ms. Measurement methods and devices of cutting heat and cutting temperature measurement are developed and improved by this research, which provide practical methods and instruments in monitoring cutting heat and cutting temperature for research and production in high-speed machining. 展开更多
关键词 thin-film thermocouple cutting temperature sensor dynamic calibration one-dimensional unsteady heat conduction response time
下载PDF
MICRO TOUCH SENSOR USING PIEZOELECTRIC THIN FILM FOR MINIMAL ACCESS SURGERY 被引量:1
2
作者 DuLiqun ZhaoHaibo +1 位作者 FukudaToshio AraiFumihito 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第1期87-91,共5页
The micro touch sensor which is designed to be used in the blood vessels isproposed. Using this touch sensor, the risk of injuring blood vessels can be reduced. A prototype ofmicro touch sensor using PZT (lead zircona... The micro touch sensor which is designed to be used in the blood vessels isproposed. Using this touch sensor, the risk of injuring blood vessels can be reduced. A prototype ofmicro touch sensor using PZT (lead zirconate titanate) thin film synthesized by hydrothermal methodis made. The basic properties of the micro touch sensor are studied. In order to analyse theproperties of the micro touch sensor, a mathematical model is set up. 展开更多
关键词 Touch sensor PZT thin film Hydrothermal method CATHETER
下载PDF
Study on the characterization and technology of Cu thin-film temperature sensor fabricated on aluminum alloy
3
作者 乔英杰 崔新芳 +1 位作者 刘瑞良 练小正 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第3期109-114,共6页
In the present study,anodic films on aluminium alloy was used as the dielectric layer for Cu thinfilm temperature sensor,and then Cu film was deposited by unbalanced magnetron sputtering ion plating as the sensitive l... In the present study,anodic films on aluminium alloy was used as the dielectric layer for Cu thinfilm temperature sensor,and then Cu film was deposited by unbalanced magnetron sputtering ion plating as the sensitive layer.Microstructure and surface morphologies of Cu film were investigated by optical microscope(OM),atomic force microscope(AFM) and scanning electron microscope(SEM).Electrical properties of Cu thin-film temperature sensor were tested by four-point probe technique and Digit Multimeter.The results showed that the surface roughness of anodic films can be reduced from Ra 58.096 nm to Ra 16.335 nm by proper polishing.Continual Cu stripes can be obtained both on polished anodic alumina film and smooth alumina wafer by etching after Cu film annealing.The resistivity of Cu films before and after 300 ℃ as well as 400 ℃ annealing are 12.48 mΩ·cm,5.48 mΩ·cm and 4.83 mΩ·cm,respectively.The resistances of Cu thin-film temperature sensor in 70 ℃ and 0 ℃ are 946.5 Ω and 761.15 Ω respectively.The temperature coefficient of resistivity(TCR) of the sensor is 3479 × 10^(- 6) /℃. 展开更多
关键词 thin-film temperature sensor ANNEALING MORPHOLOGY electrical properties
下载PDF
Fluorescent-Dye Doped Thin-Film Sensors for the Detection of Alcohol Vapors
4
作者 Jonathan K. Fong Royce N. Dansby-Sparks +6 位作者 Adam C. Lamb Thomas W. Owen Mohammad Mushfiq Uma Sampathkumaran Kisholoy Goswami Scott L. Jensen Zi-Ling Xue 《American Journal of Analytical Chemistry》 2014年第9期566-580,共15页
Fluorescence sensors based on a trifluoroacetophone compound doped in ethyl cellulose (EC) thin films have been developed for the detection of methanol, ethanol, and 2-propanol (isopropanol, PriOH) vapors. Thin-film s... Fluorescence sensors based on a trifluoroacetophone compound doped in ethyl cellulose (EC) thin films have been developed for the detection of methanol, ethanol, and 2-propanol (isopropanol, PriOH) vapors. Thin-film sensors are prepared with 4-dibutylamino-4’-(trifluoroacetyl)stilbene (Chromoionophore IX or CIX) as the fluorescent dye and its solution in EC was spin-coated onto glass slides. The luminescence intensity of the dye (555 nm) is quenched when exposed to alcohol vapor. Tested in the range of ca. 0 - 1.5?× 104 ppm (wt) for MeOH and EtOH, and ca. 0 - 2.3 × 104 ppm for PriOH, the sensors gave detection limits of 9, 13, 21 ppm and quantification limits of 32, 43, and 70 ppm, respectively. To enhance the sensitivity of the sensors, TiO2 particles have been added to the films to induce Mie scattering, which increases the incident light interaction with the sensing films. The sensors in this work have been designed to work in a multianalyte platform for the simultaneous detection of multiple gas analytes. 展开更多
关键词 Optical thin film sensors Chromoionophore IX DYE ALCOHOL Vapor DETECTION
下载PDF
Electrodeposited Cobalt-Iron Alloy Thin-Film for Potentiometric Hydrogen Phosphate-Ion Sensor 被引量:1
5
作者 Toru Kidosaki Satoko Takase Youichi Shimizu 《Journal of Sensor Technology》 2012年第3期95-101,共7页
A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobal... A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobalt-iron alloy electrode greatly improved the hydrogen-ion sensor response performance, i.e., the sensor worked stably for more than 7 weeks and showed a quick response time of several seconds. Among the cobalt and iron alloy systems tested, the electrodeposited Co58Fe42 thin-film electrode showed the best EMF response characteristics, i.e., the sensor exhibited a linear potentiometric response to hydrogen-phosphate ion at the concentration range between 1.0 × 10–5 and 1.0 × 10–2 M with the slope of –43 mV/decade at pH 5.0 and at 30℃. A sensing mechanism of the Co-based potentiometric hydrogen-phosphate ion sensor was proposed on the basis of results of instrumental analysis. 展开更多
关键词 Hydrogen-Phosphate Ion sensor Cobalt-Iron Alloy thin-film ELECTRODE ELECTRODEPOSITION
下载PDF
Temperature Dependence of Electrical Properties of Organic Thin Film Transistors Based on pn Heterojuction and Their Applications in Temperature Sensors
6
作者 Rongbin Ye Koji Ohta Mamoru Baba 《Journal of Computer and Communications》 2016年第5期10-15,共6页
Organic thin film transistors based on an F<sub>16</sub>CuPc/α6T pn heterojunction have been fabricated and analyzed to investigate the temperature dependence of electrical properties and apply in tempera... Organic thin film transistors based on an F<sub>16</sub>CuPc/α6T pn heterojunction have been fabricated and analyzed to investigate the temperature dependence of electrical properties and apply in temperature sensors. The mobility follows a thermally activated hopping process. At temperatures over 200 K, the value of thermal activation energy (E<sub>A</sub>) is 40. 1 meV, similar to that of the single-layer device. At temperatures ranging from 100 to 200 K, we have a second regime with a much lower E<sub>A</sub> of 16.3 meV, where the charge transport is dominated by shallow traps. Similarly, at temperatures above 200 K, threshold voltage (V<sub>T</sub>) increases linearly with decreasing temperature, and the variations of V<sub>T</sub> of 0.185 V/K is larger than the variation of V<sub>T</sub> (~0.020 V/K) in the single layer devices. This result is due to the interface dipolar charges. At temperatures ranging from 100 K to 200 K, we have a second regime with much lower variations of 0.090 V/K. By studying gate voltage (V<sub>G</sub>)-dependence temperature variation factor (k), the maximum value of k (~0.11 dec/K) could be obtained at V<sub>G</sub> = 5 V. Furthermore, the pn heterojunction device could be characterized as a temperature sensor well working at low operating voltages. 展开更多
关键词 Organic thin film Transistors pn Heterojunction Temperature Dependence Temperature sensors
下载PDF
Room-Temperature Humidity Sensing Using Graphene Oxide Thin Films 被引量:5
7
作者 Gautam Naik Sridhar Krishnaswamy 《Graphene》 2016年第1期1-13,共13页
In this article, we report on a room-temperature humidity sensing device using graphene oxide (GO) thin films synthesized by chemical exfoliation. Changes in the device conductivity are measured for varying relative h... In this article, we report on a room-temperature humidity sensing device using graphene oxide (GO) thin films synthesized by chemical exfoliation. Changes in the device conductivity are measured for varying relative humidity in the experimental chamber. Experiments are carried out for relative humidity varying from 30% to 95%. We observe a difference in the results obtained for low relative humidity (50%), and propose a sensing mechanism to explain this difference. Although the sensor exhibits some hysteresis at high relative humidities, a method to “reset” the sensor is also proposed. The sensing device has high sensitivity and fast response time. 展开更多
关键词 GRAPHENE thin film sensor Humidity HYSTERESIS
下载PDF
Effects of rapid thermal annealing on the room-temperature NO_2-sensing properties of WO_3 thin films under LED radiation 被引量:1
8
作者 胡明 贾丁立 +2 位作者 刘青林 李明达 孙鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第6期615-620,共6页
WO3 thin films were sputtered onto alumina substrates by DC facing-target magnetron sputtering. One sample was rapid-thermal-annealed (RTA) at 600 ℃ in a gas mixture of N2:O2 = 4 : 1, and as a comparison, another... WO3 thin films were sputtered onto alumina substrates by DC facing-target magnetron sputtering. One sample was rapid-thermal-annealed (RTA) at 600 ℃ in a gas mixture of N2:O2 = 4 : 1, and as a comparison, another was conventionally thermal-annealed at 600 ℃ in air. The morphology of both was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and the crystallization structure and phase identification were characterized by X-ray diffraction (XRD). The NO2-sensing measurements were taken under LED light at room temperature. The sensitivity of the RTA-treated sample was found to be high, up to nearly 100, whereas the sensitivity of the conventionally thermal-annealed sample was about five under the same conditions. From the much better selectivity and response-recovery characteristics, it can be concluded that compared to conventional thermal annealing, RTA has a greater effect on the NO2-sensing properties of WO3 thin films. 展开更多
关键词 gas sensor tungsten-oxide thin film rapid thermal annealing LED
下载PDF
Effects of heat treatment process on thin film alloy resistance and its stability 被引量:1
9
作者 周继承 彭银桥 《Journal of Central South University of Technology》 2003年第2期91-93,共3页
Alloy thin film for advanced pressure sensors was manufactured by means of ion-beam sputtering SiO2 insulation film and NiCr thin film on the 17-4PH stainless steel elastic substrate. The thin film resistance was resp... Alloy thin film for advanced pressure sensors was manufactured by means of ion-beam sputtering SiO2 insulation film and NiCr thin film on the 17-4PH stainless steel elastic substrate. The thin film resistance was respectively heat-treated by four processes. The effects on stability of thin film alloy resistance were investigated, and paramaters of heat treatment that make thin film resistance stable were obtained. The experimental result indicates that the most stable thin film resistance can be obtained when it is heat-treated under protection of SiO2 and N2 at 673 K for 1 h, and then kept at 473 K for 24 h. Pressure sensor chips of high precision for harsh environments can be manufactured by this process. 展开更多
关键词 thin film ALLOY RESISTANCE HEAT treatment STABILITY pressure sensors
下载PDF
Micro-arc oxidization fabrication and ethanol sensing performance of Fe-doped TiO_2 thin films 被引量:4
10
作者 Fu-jian Ren Xiao-bai Yu +1 位作者 Yun-han Ling Jia-you Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第5期461-466,共6页
In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measur... In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measure the gas sensitivity to ethanol. The results showed that Fe ions could be easily introduced into the MAO-TiO2 thin films by adding precursor K4(FeCN)6'3H20 into the NaaPO4 electrolyte. The amount of doped Fe ions increased almost linearly with the concentration of Kg(FeCN)63H20 increasing, eventually affecting the ethanol sensing performances of TiO2 thin films. It was found that the enhanced sensor signals obtained had an optimal concentration of Fe dopant (1.28at%), by which the maximal gas sensor signal to 1000 ppm ethanol was estimated to be 7.91 at 275℃. The response time was generally reduced by doped Fe ions, which could be ascribed to the increase of oxygen vacancies caused by Fe3+ substituting for Ti4+. 展开更多
关键词 thin films titanium dioxide doping iron micro-arc oxidation ethanol sensors
下载PDF
Aluminium phthalocyanine chloride thin films for temperature sensing
11
作者 Muhammad Tariq Saeed Chani Abdullah M.Asiri +3 位作者 Kh.S.Karimov Atif Khan Niaz Sher Bhadar Khan Khalid.A.Alamry 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期629-633,共5页
This study presents the fabrication and temperature sensing properties of sensors based on aluminium phthalocyanine chloride (AlPcCl) thin films. To fabricate the sensors, 50-nm-thick electrodes with 50-μ gaps betw... This study presents the fabrication and temperature sensing properties of sensors based on aluminium phthalocyanine chloride (AlPcCl) thin films. To fabricate the sensors, 50-nm-thick electrodes with 50-μ gaps between them are deposited on glass substrates. AlPcCl thin films with thickness of 50–100 nm are deposited in the gap between electrodes by thermal evaporation. The resistance of the sensors decreases with increasing thickness and the annealing at 100 ℃ results in an increase in the initial resistance of sensors up to 24%. The sensing mechanism is based on the change in resistance with temperature. For temperature varying from 25 ℃ to 80 ℃, the change in resistance is up to 60%. Simulation is carried out and results obtained coincide with experimental data with an error of ±1%. 展开更多
关键词 temperature sensor thin films ANNEALING aluminium phthalocyanine chloride
下载PDF
Chlorine Gas Sensors with HPS Film on Interdigitated Capacitors
12
作者 Wang Dao Jiang Lingyan Fan Cuiyun Yang Yang Cheng Shuiyuan 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期152-154,共3页
The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were perform... The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were performed at room temperature for frequencies 100 Hz,1 kHz and 10 kHz.It is shown that there is a linear relationship between the capacitance and the concentration of chlorine gas.Influences of the measurement frequency and film thickness of silicate on the sensitivity of the sensor to C12 gas were discussed.And organically modified N,N-diethylaminopropyl-trimethoxysilane (APMS) had a much higher sensitivity. 展开更多
关键词 chlorine sensor HPS thin film interdigital capacitors
下载PDF
Comparative H<sub>2</sub>S Sensing Characteristics of Fe<sub>2</sub>O<sub>3</sub>: Thin Film vs. Bulk
13
作者 Vishal Balouria Ajay Singh +5 位作者 Niranjan Suryakant Ramgir Anil Krishan Debnath Aman Mahajan Ratish Kumar Bedi Dinesh Kumar Aswal Shiv Kumar Gupta 《Soft Nanoscience Letters》 2013年第4期6-8,共3页
Comparative investigations of gas sensing characteristics of Fe2O3 in both thin film as well as bulk forms have been performed. Thin film sensors were realized by first depositing Fe films using electron-beam evaporat... Comparative investigations of gas sensing characteristics of Fe2O3 in both thin film as well as bulk forms have been performed. Thin film sensors were realized by first depositing Fe films using electron-beam evaporation followed by thermal oxidation. Bulk sensors in the form of pellets were prepared by cold pressing commercial Fe2O3 powder with subsequent sintering. Both thin film and bulk Fe2O3 sensors exhibited a selective and reversible response characteristics towards H2S with maximum response at an operating temperature of 250°C and 200°C, respectively. A negligible response towards other interfering gases was observed. Thin film sensors exhibited an enhanced response in comparison to that of pellets. 展开更多
关键词 FE2O3 thin film PELLETS H2S sensor
下载PDF
Thin Film Deposition by Langmuir Blodgett Technique for Gas Sensing Applications
14
作者 Sanit Malik Chandra Charu Tripathi 《Journal of Surface Engineered Materials and Advanced Technology》 2013年第3期235-241,共7页
There are various technologies like CVD. Radio Frequency sputtering, spin coating etc. present for thin film deposition for various applications and for gas sensors. In this review, special attention is focused on the... There are various technologies like CVD. Radio Frequency sputtering, spin coating etc. present for thin film deposition for various applications and for gas sensors. In this review, special attention is focused on the thin film deposition for gas sensing applications by using Langmuir Blodgett method. Langmuir Blodgett method also discussed briefly. Modified technique of Langmuir-Blodgett like Langmuir Schaefer method is discussed and various examples of Langmuir Blodgett techniques for gas sensing for space applications are included. Future prospects of gas sensing thin film deposition by Langmuir Blodgett technique are explained. 展开更多
关键词 thin films LB Method Gas sensor MOLECULAR ELECTRONICS NANOSTRUCTURES
下载PDF
Fabrication of Sm-Based Perovskite-Type Oxide Thin-Films and Gas Sensing Properties to Acetylene
15
作者 Tomohisa Tasaki Satoko Takase Youichi Shimizu 《Journal of Sensor Technology》 2012年第2期75-81,共7页
Sm-based perovskite-type oxide (SmMeO3: Me = Cr, Mn, Fe, Co) thin-films could be synthesized by a wet-chemical method using an acetylacetone—Poly(Vinyl Pyrrolidone) (PVP) polymeric precursor method at 750℃. The pero... Sm-based perovskite-type oxide (SmMeO3: Me = Cr, Mn, Fe, Co) thin-films could be synthesized by a wet-chemical method using an acetylacetone—Poly(Vinyl Pyrrolidone) (PVP) polymeric precursor method at 750℃. The perovskite-type oxide thin-films were tried to apply an acetylene gas sensor based on AC impedance spectroscopy. Among the oxides tested, SmFeO3 thin-film sensor showed good sensor responses in which the AC impedance at 20 kHz was depending on acetylene gas concentration between 2 ppm and 80 ppm at 400℃. 展开更多
关键词 PEROVSKITE-TYPE OXIDE thin-film AC IMPEDANCE ACETYLENE Gas sensor
下载PDF
高回弹性压阻式薄膜压力传感器的研究进展 被引量:1
16
作者 张燕军 孙晨 +3 位作者 高吉成 缪宏 张善文 杨坚 《传感器与微系统》 CSCD 北大核心 2024年第4期1-6,共6页
压阻式薄膜压力传感器作为薄膜压力传感器的重要分支,具有灵敏度高、响应快、弹性好等优点,如何同时实现高灵敏度、宽工作范围、快速响应和快速回弹是未来所面临的挑战,而新型材料、结构设计、传感器制备方式及动态特性建模是高回弹性... 压阻式薄膜压力传感器作为薄膜压力传感器的重要分支,具有灵敏度高、响应快、弹性好等优点,如何同时实现高灵敏度、宽工作范围、快速响应和快速回弹是未来所面临的挑战,而新型材料、结构设计、传感器制备方式及动态特性建模是高回弹性传感器研制的关键。本文归纳了基底及活性层材料制备及其相应单一微结构、仿生结构、皱褶结构的设计,同时阐述了高回弹性压阻式薄膜的制备技术,总结了薄膜压力传感器动态建模和动态补偿的方法,最后对薄膜压力传感器发展中的新需求做了展望。 展开更多
关键词 薄膜压力传感器 制备材料 制备工艺 动态特性
下载PDF
Nanocrystalline CuO Thin Films for H<sub>2</sub>S Monitoring: Microstructural and Optoelectronic Characterization
17
作者 Vikas Patil Datta Jundale +5 位作者 Shailesh Pawar Manik Chougule Prsad Godse Sanjay Patil Bharat Raut Shashwati Sen 《Journal of Sensor Technology》 2011年第2期36-46,共11页
Nanocrystalline copper oxide (CuO) thin films were deposited onto glass substrates by a spin coating technique using an aqueous solution of copper acetate. These films were characterized for their structural, mor-phol... Nanocrystalline copper oxide (CuO) thin films were deposited onto glass substrates by a spin coating technique using an aqueous solution of copper acetate. These films were characterized for their structural, mor-phological, optoelectronic properties by means of X-ray diffraction (XRD) scanning electron microscopy (SEM), UVspectroscopy and four probe method. The CuO films are oriented along (1 1 1) plane with the monoclinic crystal structure. These films were utilized in H2S sensors. The dependence of the H2S response on the operating temperature, H2S concentration of CuO film (annealed at 700。C) was investigated. The CuO film showed selectivity for H2S. The maximum H2S response of 25.2 % for the CuO film at gas concentra-tion of 100 ppm at operating temperature 200oC was achieved. 展开更多
关键词 CUO thin films Structural PROPERTIES OPTOELECTRONIC PROPERTIES H2S sensor
下载PDF
Inorganic and Organic Solution-Processed Thin Film Devices 被引量:6
18
作者 Morteza Eslamian 《Nano-Micro Letters》 SCIE EI CAS 2017年第1期16-38,共23页
Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materia... Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution. 展开更多
关键词 Organic electronics Photovoltaics thin film transistors Thermoelectric devices Organic light-emitting diodes Smart materials sensors and actuators Solution-processed methods
下载PDF
Synthesis and Characterization of Metal Organic Chemical Vapour Deposited Chromium Doped Zinc Oxide Thin Film for Gas Sensing Applications
19
作者 Olumide Oluwole Akinwunmi Olakunle A. Akinwumi +1 位作者 Johnson Ayodele O. Ogundeji Adetokunbo Temitope Famojuro 《Materials Sciences and Applications》 2018年第10期844-857,共14页
Chromium (Cr) doped Zinc oxide ZnO thin films were deposited onto glass substrates by Metal Organic Chemical Vapour Deposition (MOCVD) technique with varying dopant concentration at a temperature of 420°C. The ef... Chromium (Cr) doped Zinc oxide ZnO thin films were deposited onto glass substrates by Metal Organic Chemical Vapour Deposition (MOCVD) technique with varying dopant concentration at a temperature of 420°C. The effect of the chromium concentration on morphological, structural, optical, electrical and gas sensing properties of the films were investigated. The scanning electron microscopy results revealed that the Cr concentration has great influence on the crystallinity, surface smoothness and grain size. X-ray diffraction (XRD) studies shows that films were polycrystalline in nature and grown as a hexagonal wurtzite structure. A direct optical band energy gap of 3.32 to 3.10 eV was obtained from the optical measurements. The transmission was found to decrease with increasing Cr doping concentration. Rutherford Backscattering Spectroscopy (RBS) analysis also demonstrates that Cr ions are substitutionally incorporated into ZnO. I-V characteristic of the film shows a resistivity ranges from 1.134 × 10-2 · cm to 1.24 × 10-2 · cm at room temperature. The gas sensing response of the films were enhanced with incorporation of Cr as a dopant with optimum operating temperature around 200°C. 展开更多
关键词 ZINC Oxide thin films METAL Organic Chemical VAPOUR Deposition Gas sensors
下载PDF
基于温度原位监测的微反应器在HNS微流道制备过程中的应用
20
作者 黄健 时育坤 +6 位作者 和欣 张松 韩瑞山 周继明 张方 吴梦希 刘军山 《火炸药学报》 EI CAS CSCD 北大核心 2024年第6期559-565,I0005,共8页
针对含能材料微流道制备过程中缺乏温度原位监测手段的问题,提出一种集成薄膜温度传感器的微反应器系统;微反应器由包含薄膜温度传感器的玻璃基片与包含微流道的硅基片键合组成;微流道的上游、中游、下游分别放置了3个温度传感器,以实... 针对含能材料微流道制备过程中缺乏温度原位监测手段的问题,提出一种集成薄膜温度传感器的微反应器系统;微反应器由包含薄膜温度传感器的玻璃基片与包含微流道的硅基片键合组成;微流道的上游、中游、下游分别放置了3个温度传感器,以实现微反应过程中高空间分辨率的温度测量;基于该微反应器,搭建了六硝基茋(HNS)连续化微流道制备系统,实时监测了HNS微纳米化及球形化过程中的温度变化。结果表明,微反应器具有精度高、耐腐蚀、可观测的优点;HNS微纳米化是一个放热反应,流体最大温升为6.4℃,由于HNS的逐渐析出,流体中的固体含量增大,流速变慢,流体温度的分布发生变化;在HNS球形化过程中,两相流体的混合是一个放热过程,流体最大温升为2.3℃;微流道中游处的温度明显高于上游与下游,说明当液滴流动至中游时,HNS微球已经制备完成。 展开更多
关键词 物理化学 微反应器 薄膜温度传感器 实时温度监测 六硝基芪 HNS 微流控
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部