期刊文献+
共找到235篇文章
< 1 2 12 >
每页显示 20 50 100
THE METHOD OF THE RECIPROCAL THEOREM OF FORCED VIBRATION FOR THE ELASTIC THIN RECTANGULAR PLATES(Ⅰ)—RECTANGULAR PLATES WITH FOUR CLAMPED EDGES AND WITH THREE CLAMPED EDGES 被引量:5
1
作者 付宝连 李农 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第8期727-749,共23页
In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates w... In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates with various boundary conditions are given and the tables and figures which have practical value are provided.MRT is a simple, convenient and general method for solving the steady stale responses of rectangular plates under various harmonic disturbing forces.The paper contains three parts: (I) rectangular plates with four damped edges and with three clamped edges; (II) rectangular plates with two adjacent clamped edges; (III) cantilever plates.We arc going to publish them one after another. 展开更多
关键词 rectangular plateS WITH FOUR CLAMPED EDGES AND WITH THREE CLAMPED EDGES THE METHOD OF THE RECIPROCAL THEOREM OF FORCED VIBRATION FOR THE ELASTIC thin rectangular plateS
下载PDF
THEORY AND EXPERIMENTAL INVESTIGAION OF FLEXURAL WAVE PROPAGATION IN THIN RECTANGULAR PLATE WITH PERIODIC STRUCTURE 被引量:4
2
作者 Wen Jihong Yu Dianlong Wang Gang Zhao Hongang Liu Yaozong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期385-388,共4页
With the idea of the phononic crystals, a thin rectangular plate with two-dimensional periodic structure is designed. Flexural wave band structures of such a plate with infinite structure are calculated with the plane... With the idea of the phononic crystals, a thin rectangular plate with two-dimensional periodic structure is designed. Flexural wave band structures of such a plate with infinite structure are calculated with the plane-wave expansion (PWE) method, and directional band gaps are found in the ΓX direction. The acceleration frequency response in the ΓX direction of such a plate with finite structure is simulated with the finite element method and verified with a vibration experiment. The frequency ranges of sharp drops in the calculated and measured acceleration frequency response curves are in basic agreement with those in the band structures. Thin plate is a widely used component in the engineering structures. The existence of band gaps in such periodic structures gives a new idea in vibration control of thin plates. 展开更多
关键词 Phononic crystals Flexural wave band gaps thin rectangular plate
下载PDF
Principal parametric resonance of axially accelerating rectangular thin plate in magnetic field 被引量:14
3
作者 胡宇达 张金志 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第11期1405-1420,共16页
Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying ... Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying speed in the magnetic field. Consid- ering geometric nonlinearity, based on the expressions of total kinetic energy, potential energy, and electromagnetic force, the nonlinear magneto-elastic vibration equations of axially moving rectangular thin plate are derived by using the Hamilton principle. Based on displacement mode hypothesis, by using the Galerkin method, the nonlinear para- metric oscillation equation of the axially moving rectangular thin plate with four simply supported edges in the transverse magnetic field is obtained. The nonlinear principal parametric resonance amplitude-frequency equation is further derived by means of the multiple-scale method. The stability of the steady-state solution is also discussed, and the critical condition of stability is determined. As numerical examples for an axially moving rectangular thin plate, the influences of the detuning parameter, axial speed, axial tension, and magnetic induction intensity on the principal parametric resonance behavior are investigated. 展开更多
关键词 MAGNETO-ELASTIC axially moving rectangular thin plate principalparametric resonance STABILITY
下载PDF
AN EXACT SOLUTION FOR THE BENDING OF POINT-SUPPORTED ORTHOTROPIC RECTANGULAR THIN PLATES 被引量:1
4
作者 姜稚清 刘金喜 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第6期547-557,共11页
A closed series solution is proposed for the bending of point-supported orthotropic rectangular thin plates. The positions of support points and the distribution of transverse loadare arbitrary. If the number of simpl... A closed series solution is proposed for the bending of point-supported orthotropic rectangular thin plates. The positions of support points and the distribution of transverse loadare arbitrary. If the number of simply supported points gradually increases the solution can infinitely approach to Navier's solution. For the square plate simply supported on the middle of each edge and free at each corner, the results are very close to the numerical solutions in the past. 展开更多
关键词 exact solution point supports orthotropic rectangular thin plate
下载PDF
Nonlinear primary resonance analysis for a coupled thermo-piezoelectric-mechanical model of piezoelectric rectangular thin plates 被引量:1
5
作者 Xun WANG Chunxia XUE Haitao LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第8期1155-1168,共14页
A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Kar- man large deflection theory, the nonlinear vibration ... A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Kar- man large deflection theory, the nonlinear vibration governing equation is obtained by using Hamilton’s principle and the Rayleigh-Ritz method. The harmonic balance method (HBM) is used to analyze the first-order approximate response and obtain the frequency response function. The system shows non-linear phenomena such as hardening nonlinear- ity, multiple coexistence solutions, and jumps. The effects of the temperature difference, the damping coefficient, the plate thickness, the excited charge, and the mode on the pri- mary resonance response are theoretically analyzed. With the increase in the temperature difference, the corresponding frequency jumping increases, while the resonant amplitude decreases gradually. Finally, numerical verifications are carried out by the Runge-Kutta method, and the results agree very well with the theoretical results. 展开更多
关键词 PIEZOELECTRIC rectangular thin plate thermo-piezoelectric-mechanical coupling HARMONIC BALANCE method (HBM) primary resonance ANALYSIS
下载PDF
THEORETIC SOLUTION OF RECTANGULAR THIN PLATE ON FOUNDATION WITH FOUR EDGES FREE BY SYMPLECTIC GEOMETRY METHOD 被引量:1
6
作者 钟阳 张永山 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第6期833-839,共7页
The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firs... The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution. 展开更多
关键词 elastic foundation rectangular thin plate symplectic geometry method theoretic solution
下载PDF
Global bifurcations and multi-pulse chaotic dynamics of rectangular thin plate with one-to-one internal resonance
7
作者 李双宝 张伟 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第9期1115-1128,共14页
Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method. The rectangular thin plate is subject to transversal and in-plane excitat... Global bifurcations and multi-pulse chaotic dynamics for a simply supported rectangular thin plate are studied by the extended Melnikov method. The rectangular thin plate is subject to transversal and in-plane excitation. A two-degree-of-freedom nonlinear nonautonomous system governing equations of motion for the rectangular thin plate is derived by the von Karman type equation and the Galerkin approach. A one-to- one internal resonance is considered. An averaged equation is obtained with a multi-scale method. After transforming the averaged equation into a standard form, the extended Melnikov method is used to show the existence of multi-pulse chaotic dynamics, which can be used to explain the mechanism of modal interactions of thin plates. A method for calculating the Melnikov function is given without an explicit analytical expression of homoclinic orbits. Furthermore, restrictions on the damping, excitation, and detuning parameters are obtained, under which the multi-pulse chaotic dynamics is expected. The results of numerical simulations are also given to indicate the existence of small amplitude multi-pulse chaotic responses for the rectangular thin plate. 展开更多
关键词 rectangular thin plate global bifurcation multi-pulse chaotic dynamics extended Melnikov method
下载PDF
BASIC EQUATIONS OF THE PROBLEM OF THE NONLINEAR UNSYMMETRICAL BENDING FOR ORTHOTROPIC RECTANGULAR THIN PLATE WITH VARIABLE THICKNESS
8
作者 黄家寅 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第7期812-816,共5页
Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction (z-direction),the constitutive equations of the problem of the nonlinear unsymmetrical bendin... Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction (z-direction),the constitutive equations of the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with variable thickness are given;then introducing the dimensionless variables and three small parameters,the dimensionaless governing equations of the deflection function and stress function are given. 展开更多
关键词 orthotropic rectangular thin plate with variable thickness nonlinear unsymmetrical bending equilibrium equation compatibility equation basic equation dimensionless equation
下载PDF
UNIFORMLY VALID ASYMPTOTIC SOLUTIONS OF THE NONLINEAR UNSYMMETRICAL BENDING FOR ORTHOTROPIC RECTANGULAR THIN PLATE OF FOUR CLAMPED EDGES WITH VARIABLE THICKNESS
9
作者 黄家寅 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第7期817-826,共10页
By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate wi... By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of Nth-order for ε_1 and Mth-order for ε_2 of the deflection functions and stress function are obtained. 展开更多
关键词 orthotropic rectangular thin plate with variable thickness four clampled edge nonlinear unsymmetrical bending method of modified two-variable method of mixing perturbation uniformly valid asymptotic solution
下载PDF
A procedure of the method of reverberation ray matrix for the buckling analysis of a thin multi-span plate 被引量:1
10
作者 Zhiwei LI Guohua NIE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第7期1055-1068,共14页
A procedure of the method of reverberation ray matrix(MRRM)is developed to perform the buckling analysis of thin multi-span rectangular plates having internal line supports or stiffeners.A computation algorithm for th... A procedure of the method of reverberation ray matrix(MRRM)is developed to perform the buckling analysis of thin multi-span rectangular plates having internal line supports or stiffeners.A computation algorithm for the reverberation ray matrix in the MRRM is derived to determine the buckling loading.Specifically,the analytical solutions are presented for the buckling of the structure having two opposite simply-supported or clamped-supported edges with spans,while the constraint condition of two remaining edges may be in any combination of free,simply-supported,and clamped boundary conditions.Furthermore,based on the analysis of matrices relating to the unknown coefficients in the solution form for the deflection in terms of buckling modal functions,some recursive equations(REs)for the MRRM are introduced to generate a reduced reverberation ray matrix with unchanged dimension when the number of spans increases,which promotes the computation efficiency.Several numerical examples are given,and the present results are compared with the known solutions to illustrate the validity and accurateness of the MRRM for the buckling analysis. 展开更多
关键词 MULTI-SPAN thin rectangular plate BUCKLING method of reverberation ray matrix(MRRM) recursive equation(RE)
下载PDF
Element-free Galerkin method for free vibration of rectangular plates with interior elastic point supports and elastically restrained edges 被引量:1
11
作者 王砚 王忠民 阮苗 《Journal of Shanghai University(English Edition)》 CAS 2010年第3期187-195,共9页
The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for t... The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed. 展开更多
关键词 element free method rectangular thin plates interior elastic point supports elastically restrained edges free vibration
下载PDF
ANALYSIS OF GLOBAL DYNAMICS IN A PARAMETRICALLY EXCITED THIN PLATE
12
作者 张伟 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第1期71-85,共15页
The global bifurcations and chaos of a simply supported rectangular thin plate with parametric excitation are analyzed. The formulas of the thin plate are derived by von Karman type equation and Galerkin's approac... The global bifurcations and chaos of a simply supported rectangular thin plate with parametric excitation are analyzed. The formulas of the thin plate are derived by von Karman type equation and Galerkin's approach. The method of multiple scales is used to obtain the averaged equations. Based on the averaged equations, the theory of the normal form is used to give the explicit expressions of the normal form associated with a double zero and a pair of pure imaginary eigenvalues by Maple program. On the basis of the normal form, a global bifurcation analysis of the parametrically excited rectangular thin plate is given by the global perturbation method developed by Kovacic and Wiggins. The chaotic motion of thin plate is also found by numerical simulation. 展开更多
关键词 rectangular thin plate global bifurcations normal form CHAOS
下载PDF
A FREE RECTANGULAR PLATE ON ELASTIC FOUNDATION
13
作者 成祥生 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第10期977-982,共6页
This article will discuss the bending problems of the rectangular plates with free boundaries on elastic foundations. We talk over the two cases, that is, the plate acted on its center by a concentrated force and the ... This article will discuss the bending problems of the rectangular plates with free boundaries on elastic foundations. We talk over the two cases, that is, the plate acted on its center by a concentrated force and the plate subjected to by a concentrated force equally at four corner points respectively. We select a flexural function which satisfies not only all the geometric boundary conditions on free edges wholly but also the boundary conditions of the total internal forces. We apply the variational method meanwhile and then obtain better approximate solutions. 展开更多
关键词 rectangular thin plate bending problem Galerkin's variational method flexural function
下载PDF
Hydroelastic Analysis of Very Large Floating Structures Using Plate Green Functions 被引量:5
14
作者 闫红梅 崔维成 刘应中 《海洋工程:英文版》 2003年第2期151-162,共12页
Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is signific... Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied. 展开更多
关键词 hydroelastic response very large floating structure fluid Green function plate Green function thin plate theory free-free rectangular plate
下载PDF
Analysis of the Behavior of a Square Plate in Free Vibration by FEM in Ansys
15
作者 Pascal Kuate Nkounhawa Dieunedort Ndapeu +1 位作者 Bienvenu Kenmeugne Tibi Beda 《World Journal of Mechanics》 2020年第2期11-25,共15页
In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The ... In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The study of plate behavior is a very sensitive subject because it is part of the structural elements. The study of the dynamic behavior of free vibration structures is done by modal analysis in order to calculate natural frequencies and modal deformations. In this paper, we present the modal analysis of a thin rectangular plate simply supported. The analytical solution of the differential equation is obtained by applying the method of separating the variables. We are talking about the exact solution of the problem to the limit values. However, numerical methods such as the finite element method allow us to approximate these functions with greater accuracy. It is one of the most powerful computational methods for predicting dynamic response in a complex structure subject to arbitrary boundary conditions. The results obtained by MEF through Ansys 15.0 are then compared with those obtained by the analytical method. 展开更多
关键词 Free VIBRATION VIBRATION Modes MODAL ANALYSIS Natural Frequencies MODAL Deformations thin rectangular plate Finite Element Method (FEM)
下载PDF
导电矩形薄板的磁弹性超谐-内联合共振
16
作者 李晶 胡宇达 高崇一 《应用力学学报》 CAS CSCD 北大核心 2024年第3期673-681,共9页
研究横向磁场中矩形薄板在外激励作用下的超谐波共振和1∶3内共振的联合共振问题。针对一边固定三边简支的矩形薄板,利用Galerkin积分法得到两自由度非线性振动微分方程组。采用多尺度法求解,得到前两阶模态的幅频响应方程组。通过算例... 研究横向磁场中矩形薄板在外激励作用下的超谐波共振和1∶3内共振的联合共振问题。针对一边固定三边简支的矩形薄板,利用Galerkin积分法得到两自由度非线性振动微分方程组。采用多尺度法求解,得到前两阶模态的幅频响应方程组。通过算例,得到系统发生超谐-内联合共振时前两阶响应幅值与各参数关系的曲线图,讨论了外激励幅值、磁场强度等参数对系统振动的影响。结果表明,考虑内共振时高阶模态被间接激发,系统存在着能量的交换,调节磁场强度可控制系统的共振。 展开更多
关键词 磁弹性 矩形薄板 超谐波共振 内共振 多尺度法
下载PDF
四边不同支承条件下矩形板的结构计算
17
作者 杨成永 许清滔 +1 位作者 马文辉 韩薛果 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期101-111,共11页
采用带补充项的傅立叶级数作为挠度函数,针对四边不同支承矩形薄板,推导了确定待定系数的方程组,给出可处理简支边、固支边和自由边任意组合条件下统一的结构计算公式.探讨了集中荷载作用处弯矩级数解不收敛的处理办法,以及双向板简化... 采用带补充项的傅立叶级数作为挠度函数,针对四边不同支承矩形薄板,推导了确定待定系数的方程组,给出可处理简支边、固支边和自由边任意组合条件下统一的结构计算公式.探讨了集中荷载作用处弯矩级数解不收敛的处理办法,以及双向板简化为单向板需要达到的长宽比问题.结果表明,集中荷载作用处的弯矩,可采用挠度值按中心差分公式进行计算,差分步长可取10 mm.对边支承对边自由板及一边固支三边自由板,可视作单向板.当四边支承板的长宽比达到2∶1、2.5∶1及4.5∶1时,可分别简化为两端固支、一端简支一端固支及两端简支单向板.三边支承一边自由板长宽比达到1∶1及2∶1时,可分别简化为两端固支(及一端简支一端固支)及两端简支单向板;长宽比达到6∶1时,可简化为悬臂单向板.两邻边支承两邻边自由板若要简化为悬臂单向板,在两支承边为固支时,长宽比需要达到2∶1;在支承边为一边简支一边固支时,长宽比要达到1.5∶1. 展开更多
关键词 矩形薄板 结构分析 支承条件 级数解 收敛 单向板
下载PDF
磁场中导电矩形薄板1∶3内共振下的超谐波动力学响应
18
作者 李晶 高崇一 《唐山学院学报》 2024年第3期1-7,77,共8页
针对横向恒定磁场中一边固定三边简支的导电矩形薄板,研究1∶3内共振条件下系统发生超谐波共振时的动力学响应。利用伽辽金法得到两自由度非线性振动微分方程组,并通过数值计算得到系统发生超谐-内联合共振时前两阶模态的响应图。结果表... 针对横向恒定磁场中一边固定三边简支的导电矩形薄板,研究1∶3内共振条件下系统发生超谐波共振时的动力学响应。利用伽辽金法得到两自由度非线性振动微分方程组,并通过数值计算得到系统发生超谐-内联合共振时前两阶模态的响应图。结果表明,内共振的存在使得高阶模态被间接激发,不同参数下系统呈现出混沌、概周期运动等复杂动力学响应,可以通过调节磁场强度控制系统振动。 展开更多
关键词 磁弹性 矩形薄板 内共振 超谐波共振
下载PDF
一角点支撑对边两边固支正交各向异性矩形薄板振动的辛叠加方法
19
作者 叶雨农 额布日力吐 《应用数学和力学》 CSCD 北大核心 2024年第7期898-906,共9页
运用辛叠加方法研究了一角点支撑对边两边固支的正交各向异性矩形薄板的振动问题.首先由边界条件出发,将原振动问题分解为两个对边简支的子振动问题,再根据Hamilton体系的分离变量法分别得到两个子振动问题的级数展开解,然后利用叠加方... 运用辛叠加方法研究了一角点支撑对边两边固支的正交各向异性矩形薄板的振动问题.首先由边界条件出发,将原振动问题分解为两个对边简支的子振动问题,再根据Hamilton体系的分离变量法分别得到两个子振动问题的级数展开解,然后利用叠加方法得到原振动问题的辛叠加解.为了在具体计算中确定所得辛叠加的级数展开项,对该解计算正交各向异性矩形薄板的情形进行了收敛性分析.应用所得辛叠加解分别计算了一角点支撑对边两边固支的各向同性和正交各向异性矩形薄板的振动频率,进而给出了正交各向异性方形薄板的前8阶振动频率所对应的模态. 展开更多
关键词 正交各向异性矩形薄板 HAMILTON体系 辛叠加方法 振动
下载PDF
煤矿充填开采下顶板沉降研究
20
作者 高雁宁 王晓磊 +1 位作者 刘历波 韩现刚 《粉煤灰综合利用》 CAS 2024年第2期45-50,共6页
充填采矿可以有效控制岩层移动、抑制地表沉陷、减轻地质灾害,并且能够处理或利用一定的固体废弃物,有效改善矿山上覆岩层的力学环境,减轻顶板压力。以平凉某煤矿为工程背景,研究煤矿充填开采条件下坚硬顶板沉降变形情况,构建了顶板力... 充填采矿可以有效控制岩层移动、抑制地表沉陷、减轻地质灾害,并且能够处理或利用一定的固体废弃物,有效改善矿山上覆岩层的力学环境,减轻顶板压力。以平凉某煤矿为工程背景,研究煤矿充填开采条件下坚硬顶板沉降变形情况,构建了顶板力学模型,对于初期来压采用四边固支的边界条件,利用变分法中伽辽金变形方程求选用不同挠度表达式的解;另对周期来压选用三边固支一边自由的边界条件,采用变分法中里兹变形方程进行求解,得出充填后顶板挠度显著减小,初期来压时减小38.74%,周期来压时减小66.84%。并得到充填开采顶板沉降变形规律,随着充填体弹性模量k值增大,顶板下沉位移显著减小。 展开更多
关键词 顶板力学模型 矩形弹性薄板 充填开采 顶板沉降 变分法
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部