The purpose of this study is to comparatively evaluate the wear resistance of concretes under abrasion rates. Five concrete mix proportions of a fixed water-cement ratio of 0.45 were considered in the study, but the c...The purpose of this study is to comparatively evaluate the wear resistance of concretes under abrasion rates. Five concrete mix proportions of a fixed water-cement ratio of 0.45 were considered in the study, but the constituent materials, age of concrete and exposure contact conditions were varied. The coarse aggregate type employed in the study was crushed granite. The compressive strength and abrasion resistance of concretes were tested between at ages 7 to 70 days and 100 - 500 revolutions of abrasion wheels respectively. The study revealed that the compressive strength and abrasion resistance had the optimal performance when the coarse aggregate content was 45% and the worst performance when the fine aggregate content was 28.7% of the total weight of concrete constituents. There was a remarkable loss of concrete particles to wear between 200 revs and 300 revs of abrasion wheel contact. Concrete grade in excess of 60 N/mm2 is required to resist abrasion beyond 200 revolutions of abrasion wheel contact on concrete specimens. Concretes investigated also showed weak resistance to deep abrasion at and above 300 revolutions of abrasion wheel contact.展开更多
In the present study,abrasion resistance and compressive strength of concrete specimens containing SiO2 and CuO nanoparticles in different curing media have been investigated.Portland cement was partially replaced by ...In the present study,abrasion resistance and compressive strength of concrete specimens containing SiO2 and CuO nanoparticles in different curing media have been investigated.Portland cement was partially replaced by up to 2.0 wt%of SiO2 and CuO nanoparticles and the mechanical properties of the produced specimens were measured.Increasing the nanoparticles content was found to increase the abrasion resistance of the specimens cured in water and saturated limewater,while this condition was not observed for compressive strength in the both curing media.The enhancement of abrasion resistance was higher for the specimens containing SiO2 nanoparticles in both curing media.Since abrasion resistance and compressive strength of the specimens followed a similar regime as the nanoparticles increased for the specimens cured in saturated limewater,some experimental relationships has been presented to correlate these two properties of concrete for this curing medium.On the whole,it has been concluded that the abrasion resistance of concrete does not only depend on the corresponding compressive strength.展开更多
文摘The purpose of this study is to comparatively evaluate the wear resistance of concretes under abrasion rates. Five concrete mix proportions of a fixed water-cement ratio of 0.45 were considered in the study, but the constituent materials, age of concrete and exposure contact conditions were varied. The coarse aggregate type employed in the study was crushed granite. The compressive strength and abrasion resistance of concretes were tested between at ages 7 to 70 days and 100 - 500 revolutions of abrasion wheels respectively. The study revealed that the compressive strength and abrasion resistance had the optimal performance when the coarse aggregate content was 45% and the worst performance when the fine aggregate content was 28.7% of the total weight of concrete constituents. There was a remarkable loss of concrete particles to wear between 200 revs and 300 revs of abrasion wheel contact. Concrete grade in excess of 60 N/mm2 is required to resist abrasion beyond 200 revolutions of abrasion wheel contact on concrete specimens. Concretes investigated also showed weak resistance to deep abrasion at and above 300 revolutions of abrasion wheel contact.
文摘In the present study,abrasion resistance and compressive strength of concrete specimens containing SiO2 and CuO nanoparticles in different curing media have been investigated.Portland cement was partially replaced by up to 2.0 wt%of SiO2 and CuO nanoparticles and the mechanical properties of the produced specimens were measured.Increasing the nanoparticles content was found to increase the abrasion resistance of the specimens cured in water and saturated limewater,while this condition was not observed for compressive strength in the both curing media.The enhancement of abrasion resistance was higher for the specimens containing SiO2 nanoparticles in both curing media.Since abrasion resistance and compressive strength of the specimens followed a similar regime as the nanoparticles increased for the specimens cured in saturated limewater,some experimental relationships has been presented to correlate these two properties of concrete for this curing medium.On the whole,it has been concluded that the abrasion resistance of concrete does not only depend on the corresponding compressive strength.