期刊文献+
共找到870篇文章
< 1 2 44 >
每页显示 20 50 100
Numerical simulation of two-phase flow field in underwater sealing device based on dynamic mesh 被引量:1
1
作者 张学伟 李强 吕梦柔 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第3期253-257,共5页
In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the m... In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the model of underwater weapon sealing device and unstructured mesh computing domain model based on computational fluid dynamics(CFD),dynamic mesh and user defined function(UDF),the N-S equation is solved and the numerical analysis and calculation of the complex two-phase flow inside the sealing device are carried out.The results show that the gas discharged from the sealing device is conducive to the formation of the projectile supercavity.When the projectile is launched at 5munder water,the shock wave before and after the projectile has impact on the box body up to 100 MPa,therefore the sealing device must be strong enough.The research results have the vital significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation. 展开更多
关键词 two-phase flow SUPERCAVITATION sealing device computational fluid dynamics(CFD) dynamic mech
下载PDF
Flow Dynamics of a Spiral-groove Dry-gas Seal 被引量:20
2
作者 WANG Bing ZHANG Huiqiang CAO Hongjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期78-84,共7页
The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the... The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal. 展开更多
关键词 flow dynamics spiral-groove dry-gas seal turbulence effects direct numerical simulation (DNS) Reynolds-averaged Navier-Stokes (RANS) method Reynolds lubrication equation
下载PDF
Effects of Four Types of Pre-swirls on the Leakage, Flow Field, and Fluid-Induced Force of the Rotary Straight-through Labyrinth Gas Seal 被引量:2
3
作者 Qingfeng Wang Lidong He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期119-133,共15页
The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals duri... The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals during machine operation must be accurately quantified to predict their dynamic behavior effectively. To understand the fluid-induced force characteristics of the labyrinth seal more fully, the effects of four types of pre-swirls on the leakage, flow field, and fluid-induced force of a rotary straight-through labyrinth gas seal (RSTLGS) were numerically investigated using the proposed steady computational fluid dynamics (CFD) method based on the three-dimensional models of the RSTLGS. The leakage, flow field, and fluid-induced force of the RSTLGS for six axial pre-swirl velocities, four radial preswirl angles, four circumferential positive pre-swirl angles, and four circumferential negative pre-swirl angles were computed under the same geometrical parameters and operational conditions. Mesh analysis ensures the accuracy of the present steady CFD method. The numerical results show that the four types of pre-swirls influence the leakage, flow field, and fluid-induced force of the RSTLGS. The axial pre-swirl velocity remarkably inhibits the fluid-induced force, and the circumferential positive pre-swirl angle and circumferential negative pre-swirl angle remarkably promote the fluid-induced force. The effects of the radial pre-swirl angle on the fluid-induced force are complicated, and the pressure forces and viscous forces show the maximum or minimum values at a specific radial pre-swirl angle. The pre-swirl has a negligible impact on the leakage. The four types of pre-swirls affect the leakage, flow field, and fluidinduced force of the RSTLGS to varying degrees. The pre-swirl is the influence factor affecting the leakage, flow field, and fluid-induced force of the RSTLGS. The conclusions will help to understand the fluid-induced force of labyrinth seals more fully, by providing helpful suggestions for engineering practices and a theoretical basis to analyze the fluid–structure interaction of the seal-rotor system in future research. 展开更多
关键词 ROTARY straight-through LABYRINTH gas seal PRE-SWIRL LEAKAGE flow field Fluid-induced FORCE
下载PDF
Numerical simulation on rotordynamic characteristics of annular seal under uniform and non-uniform flows 被引量:4
4
作者 吴大转 姜新阔 +2 位作者 初宁 武鹏 王乐勤 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1889-1897,共9页
Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are... Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are based on the traditional quasi-steady method. In this work, an improved quasi-steady method along with the transient method was presented to compute the rotordynamic coefficients of a long seal. By comparisons with experimental data, the shortcomings of quasi-steady methods have been identified. Then, the effects of non-uniform incoming flow on seal dynamic coefficients were studied by transient simulations. Results indicate that the long seal has large cross stiffness k and direct mass M which are not good for rotor stability, while the transient method is more suitable for the long seal for its excellent performance in predicting M. When the incoming flow is non-uniform, the stiffness coefficients vary with the eccentric directions. Based on the rotordynamic coefficients under uniform incoming flow, the linearized fluid force formulas, which can consider the effects of non-uniform incoming flow, have been presented and can well explain the varying-stiffness phenomenon. 展开更多
关键词 long pump seal rotordynamic coefficients transient computational fluid dynamics(CFD) dynamic mesh non-uniform incoming flow
下载PDF
Effects of Geometry on Leakage Flow Characteristics of Brush Seal
5
作者 Yuan Wei Zhaobo Chen Yinghou Jiao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第2期1-7,共7页
In order to better application of brush seal in rotating machinery,the leakage flow characteristics of the brush seal considering geometry effects are numerically analyzed using Reynolds-Averaged Navier-Stokes( RANS) ... In order to better application of brush seal in rotating machinery,the leakage flow characteristics of the brush seal considering geometry effects are numerically analyzed using Reynolds-Averaged Navier-Stokes( RANS) model coupling with a non-Darcian porous medium model. The reliability of the present numerical method is proved,which is in agreement with the experimental and numerical results from literatures. Three different bristle pack thicknesses,fence heights and initial clearances under different pressure ratios,rotational velocities and other operating conditions are utilized to investigate the effects of geometry modification on the brush seal leakage flow behaviors. It discusses the effectiveness of various geometry configurations outlining important flow features. The results indicate that the increase of fence height and clearance would lead to the increase of leakage rate. But the leakage is not linearly with respect to the bristle pack thickness,and the effect of rotational velocity is not obvious. Moreover,the detailed leakage flow fields and pressure distributions along the rotor surface,free bristle height,and fence height of the brush seals are also presented. The static pressure drop amplitude through the bristle pack and the pressure rise amplitude through the cavity would increase while the pressure differential increases. And the axial pressure is the main reason of bristle blow down. The results provide theoretical support for the brush seal structure optimal design. 展开更多
关键词 brush seal GEOMETRY leakage flow characteristics non-Darcian porous medium model CFD
下载PDF
Experimental Examination of Fluid Flow in Fractured Carbon Storage Sealing Formations
6
作者 Dustin Crandall Grant Bromhal 《International Journal of Geosciences》 2013年第8期1175-1185,共11页
This report describes a series of experiments where CO2-saturated-brine flow through fractured seal rocks from three sites within the continental United States that are being considered, or are actively being used, fo... This report describes a series of experiments where CO2-saturated-brine flow through fractured seal rocks from three sites within the continental United States that are being considered, or are actively being used, for CCUS pilot studies were examined. The experiments were performed over multiple weeks by injecting CO2 saturated brine through fractured samples, and were scanned with a computed tomography scanner at regular intervals over the course of the experiment while kept at representative reservoir pressures. The goal was to evaluate the change in the fracture flow that would result from a CO2 leakage event so that accurate relationships can be implemented in numerical models to assess risk. Of the three different formations studied in this series of fractured seal formation CO2-saturated-brine flow through experiments, only one formation had a reaction that was greater than the noise in the system. Reactions within the Tuscaloosa claystone sample appeared to reduce the transmissivity of the fracture slightly over the 39 day experiment. The change in the geometry of the fracture was not great enough to view with the medical CT images that were captured during the experiment. All other tests showed a minimal amount of change in the fracture and fracture flow properties. 展开更多
关键词 CCUS Fractured seal CT SCANNING Fractured ROCK flow
下载PDF
Flow and Leakage Characteristics in Sealing Chamber of a Variable Geometry Hypersonic Inlet
7
作者 XIA Feng SUN Bo +3 位作者 YU Jianyi YUE Lianjie GAO Yu DAI Chunliang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第6期663-671,共9页
When the variable geometry hypersonic inlet is sealed with ceramic wafers,the cavity flows inside the sealing chamber can be affected by the boundary layer near the side wall.To study the influence of the boundary lay... When the variable geometry hypersonic inlet is sealed with ceramic wafers,the cavity flows inside the sealing chamber can be affected by the boundary layer near the side wall.To study the influence of the boundary layer thickness near the side wall on the flow and leakage characteristics in sealing chamber,the numerical calculation of the cavity flow in the sealing chamber under different inflow boundary layer thicknesses is carried out.The results show that three-dimensional cavity flow structures are close to being asymmetric,and the entrance pressure of the leakage path can also be affected by asymmetry;with the increase of the thickness of the boundary layer,the pressure at the cavity floor and the seal entrance decreases.Finally,the existing leakage prediction model is modified according to the distribution rule of the cavity floor and the flow properties in the leakage path. 展开更多
关键词 variable geometry inlet ceramic wafer seal vortex structure leakage rate asymmetry three-dimensional cavity flow
下载PDF
袋型阻尼密封动力学特性双控制体Bulk Flow模型
8
作者 桂佳强 李志刚 李军 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期26-38,共13页
为快速准确预测袋型阻尼密封泄漏特性和动力学特性,针对传统单控制体Bulk Flow模型预测精度低、无法预测交叉动力系数的问题,提出了袋型阻尼密封双控制体Bulk Flow模型和动力学特性数值预测方法,并开发了计算程序。首先,依据边界层理论... 为快速准确预测袋型阻尼密封泄漏特性和动力学特性,针对传统单控制体Bulk Flow模型预测精度低、无法预测交叉动力系数的问题,提出了袋型阻尼密封双控制体Bulk Flow模型和动力学特性数值预测方法,并开发了计算程序。首先,依据边界层理论,将袋型密封腔室划分为两个控制体,推导了控制体的连续性、周向动量和能量方程,引入Swamee-Jain和Takahashi方程,计算流体-壁面间和流体-流体间的周向黏性摩擦力;其次,采用牛顿-拉夫森算法和摄动分析法分别求解0阶和1阶控制方程,获得各刚度、阻尼动力特性系数;然后,通过与袋型阻尼密封泄漏量和动力特性系数的实验值、单控制体Bulk Flow模型和非定常计算流体动力学(CFD)数值结果进行比较,验证了模型和方法的准确性和可靠性;最后,研究了转子转速(10 000、15 000、20 000 r/min)和预旋比(0.067、0.724、0.997)对袋型阻尼密封动力学特性的影响。结果表明:所发展的模型和方法具有计算速度快、预测精度高(泄漏量预测误差小于6%,动力特性系数预测误差小于38%)的优点;转子转速和进口预旋的增大均会导致袋型阻尼密封有效阻尼显著减小,穿越频率显著增大,易诱发轴系失稳。 展开更多
关键词 袋型阻尼密封 泄漏特性 动力学特性 双控制体 Bulk flow模型
下载PDF
A New Magnetic Sealless Coupling Axial Flow Blood Pump
9
作者 LIN Chang-yan, LI Bing-yi, JIANG Yi-ling, WANG Jing, CHEN Li-zheng 《Chinese Journal of Biomedical Engineering(English Edition)》 2003年第3期133-138,共6页
For rotating blood pump, the sealing problem is a very important one to solve. In this paper, it was introduced that we designed and made a small axial flow pump, applying the magnetic coupling method. The pump consis... For rotating blood pump, the sealing problem is a very important one to solve. In this paper, it was introduced that we designed and made a small axial flow pump, applying the magnetic coupling method. The pump consisted of two pump housings, a brushless DC motor, an impeller with five wanes, a pair of magnetic discs, a spacer, an inlet and an outlet areas , bearings, a support frame, and etc. The pump is made of titanium and is 125 mm length, 147 ml volume, total 380g of weight. Performances of outputting, sealing, heat creating and damage to blood by the pump were investigated in vitro experiment. Results showed for external experiment that: (1)The pressure created by the pump was 90 mmHg, the flow rates were 1.2 L/min, 4 L/min, 5.9 L/min and 7.8 L/min correspondingly to 5000 rpm, 6000 rpm, 7000 rpm and 8000rpm rotation speeds. The hydrodynamic performance of the axial flow blood pump was enough to meet a patient need when the blood pump was used as a left ventricular assistant device. (2)The hemolysis test was studied by the normalized index of hemolysis(NIH). The NIH result of the axial flow pump was 0.08 g/100 L. (3)The outside temperature of the pump didnt change obviously in 120 hours of rotation, and the sealing function was very well. 展开更多
关键词 MAGNETIC sealless COUPLING AXIAL flow PUMP dynamics output damage to BLOOD sealING heating
下载PDF
Bulk Flow方法分析孔型密封转子动力特性的有效性 被引量:14
10
作者 晏鑫 李军 丰镇平 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第1期24-28,共5页
基于Kleynhans和Childs的两控制容积等温BF(Bulk Flow)模型,通过增加能量方程和理想气体状态方程,建立了理想气体BF方法的数学模型,来预测和分析孔型密封转子在偏心状态下的静力学和动力学特性.由于转子在密封中心附近做微小涡动,故可... 基于Kleynhans和Childs的两控制容积等温BF(Bulk Flow)模型,通过增加能量方程和理想气体状态方程,建立了理想气体BF方法的数学模型,来预测和分析孔型密封转子在偏心状态下的静力学和动力学特性.由于转子在密封中心附近做微小涡动,故可通过采用摄动方法使得NS方程的求解过程得到较大的简化,再通过迭代求解简化后的零阶和一阶摄动方程组,就可以求出孔型密封的流场和动力特性系数.以此为依据发展了相关程序,计算出了不同工况条件下孔型密封的转子动力特性系数与激振频率的关系,通过与已有的实验数据和等温BF模型的计算结果进行对比,验证了理想气体BF模型及相关求解方法的有效性.结果表明:理想气体BF模型的预测结果与实验数据吻合良好,且优于等温BF模型的计算结果,证明了该理想气体BF模型的正确性和计算方法的可靠性.该方法可用于孔型密封动力特性的预测. 展开更多
关键词 孔型密封 BULK flow方法 两控制容积 转子动力学特性
下载PDF
Gasket-Seal技术在颅底肿瘤内镜手术颅底重建中应用的荟萃分析 被引量:3
11
作者 柏瑞 李学记 《癌症进展》 2017年第7期762-766,801,共6页
目的评价Gasket-Seal技术在颅底肿瘤内镜手术颅底重建中应用的效果。方法在中外文文献数据库中检索2007年10月至2016年10月已发表的关于应用Gasket-Seal技术进行颅底肿瘤内镜手术颅底重建的病例对照研究。利用Review Manager(5.3版)软... 目的评价Gasket-Seal技术在颅底肿瘤内镜手术颅底重建中应用的效果。方法在中外文文献数据库中检索2007年10月至2016年10月已发表的关于应用Gasket-Seal技术进行颅底肿瘤内镜手术颅底重建的病例对照研究。利用Review Manager(5.3版)软件进行荟萃分析。结果按文献入选标准共纳入5篇病例对照研究,共210例颅底肿瘤内镜手术患者纳入荟萃研究。荟萃分析表明,与非GS组相比,GS组患者术后远期脑脊液漏发生率低(OR=0.32,95%CI=0.11~0.89,P=0.03),术后脑膜炎发生率低(OR=0.10,95%CI=0.01~0.67,P=0.02)。根据GS组是否联合NSF进行亚组分析,结果表明两亚组术后远期脑脊液漏发生率间比较,差异无统计学意义(P=0.85)。在GS组中,采用人工骨组与采用同种骨(包括自体骨和异体骨)组病例术后脑脊液漏发生率比较,差异无统计学意义(P=0.25)。结论应用Gasket-Seal技术能安全有效地完成颅底肿瘤内镜手术中的颅底重建。相较其他颅底重建方法,术后脑脊液漏及脑膜炎的发生率更低。 展开更多
关键词 Gasket-seal技术 内镜手术 颅底重建 高流量脑脊液漏 荟萃分析
下载PDF
基于POLYFLOW的汽车密封条挤出口模结构优化 被引量:3
12
作者 熊巧巧 陈启鹏 《贵州科学》 2015年第6期20-23,共4页
本文对某款汽车密封条挤出成型过程进行研究,建立密封条熔融体挤出流动的本构方程,运用计算机流体动力学软件POLYFLOW对密封条熔融体通过口模的挤出流动特性进行模拟分析,对挤出胀大的原因加以阐述。通过对密封条挤出胀大横截面与挤出... 本文对某款汽车密封条挤出成型过程进行研究,建立密封条熔融体挤出流动的本构方程,运用计算机流体动力学软件POLYFLOW对密封条熔融体通过口模的挤出流动特性进行模拟分析,对挤出胀大的原因加以阐述。通过对密封条挤出胀大横截面与挤出口模横截面的相对位移情况的对比,最终提出该款密封条挤出口模的结构优化方案。 展开更多
关键词 汽车密封条 流动特性 挤出胀大 结构优化
下载PDF
基于POLYFLOW的汽车密封条挤出口模结构优化
13
作者 熊巧巧 陈启鹏 《橡塑技术与装备》 CAS 2016年第4期89-91,99,共4页
对某款汽车密封条挤出成型过程进行研究,建立密封条熔融体挤出流动的本构方程,运用计算机流体动力学软件POLYFLOW对密封条熔融体通过口模的挤出流动特性进行模拟分析,对挤出胀大的原因加以阐述。通过对密目条挤出胀大横截面与挤出口... 对某款汽车密封条挤出成型过程进行研究,建立密封条熔融体挤出流动的本构方程,运用计算机流体动力学软件POLYFLOW对密封条熔融体通过口模的挤出流动特性进行模拟分析,对挤出胀大的原因加以阐述。通过对密目条挤出胀大横截面与挤出口模横截面的相对位移情况的对比,最终提出该款密封条挤出口模的结构优化方案。 展开更多
关键词 汽车密封条 流动特性 挤出胀大 结构优化
下载PDF
采用Bulk-Flow模型的直通式迷宫密封转子动力特性研究 被引量:5
14
作者 王天昊 李志刚 李军 《西安交通大学学报》 EI CAS CSCD 北大核心 2021年第5期25-33,共9页
为了选择最佳泄漏模型并探究运行工况参数对直通式迷宫密封转子动力特性的影响规律,基于单控制体等熵过程Bulk-Flow模型发展了迷宫密封转子动力特性预测方法并开发了计算程序。通过对72种泄漏模型进行适用性分析,获得的最佳泄漏模型是采... 为了选择最佳泄漏模型并探究运行工况参数对直通式迷宫密封转子动力特性的影响规律,基于单控制体等熵过程Bulk-Flow模型发展了迷宫密封转子动力特性预测方法并开发了计算程序。通过对72种泄漏模型进行适用性分析,获得的最佳泄漏模型是采用Neumann泄漏方程、Chaplygin流量系数、Swamee&Jain切应力系数以及Kurohashi动能输运系数(正预旋工况)或Neumann动能输运系数(负预旋工况)的模型。所发展的方法结合这一模型对迷宫密封交叉刚度和直接阻尼的平均预测误差约为10%。研究了压比(0.3,0.5,0.7)和预旋比(-0.8,-0.4,0,0.4,0.8)对迷宫密封转子动力特性的影响,结果表明:迷宫密封交叉刚度和直接阻尼对密封进口压力敏感,而受出口压力的影响有限,穿越频率几乎不受进出口压力的影响;迷宫密封有效阻尼随预旋比增大而减小,在正预旋时出现负值,且其穿越频率随预旋比增大而显著增大,不利于转子系统的稳定运行;进口预旋速度的影响在密封上游腔室更为显著,应在迷宫密封进口采用防旋流装置来抑制泄漏流的周向流动。所发展的预测方法和计算程序可为迷宫密封转子动力特性系数的快速评估提供技术手段。 展开更多
关键词 迷宫密封 Bulk-flow模型 泄漏模型 转子动力特性
下载PDF
Effect of Honeycomb Seals on Loss Characteristics in Shroud Cavities of an Axial Turbine 被引量:15
15
作者 GAO Jie ZHENG Qun WANG Zheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期69-77,共9页
The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to opti... The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to optimize turbomachinery. At present, little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine, despite of the widespread use of the honeycomb seals. Therefore, interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow. The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed. An additional study on the impact of subtle shroud cavity exit geometry is also presented. The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal. The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions. The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry, and it is helpful for the design optimization of turbomachinery. 展开更多
关键词 tip leakage flow honeycomb seal mixing losses exit cavity geometry
下载PDF
Theoretical and experimental study on the rheological properties of WIS grout and the dispersion and sealing mechanism
16
作者 Mengmeng Zhou Shucai Li +3 位作者 Zhuo Zheng Rentai Liu Mengjun Chen Chenyang Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第4期669-684,共16页
Recently a new grout material called water inflow sealing(WIS) was invented for sealing water inflow in tunneling and underground constructions. In this study, a special experimental method called intubated counter gr... Recently a new grout material called water inflow sealing(WIS) was invented for sealing water inflow in tunneling and underground constructions. In this study, a special experimental method called intubated counter grouting(ICG) was proposed to investigate the influence of water dispersion on the rheological properties of the grout during the grouting process, and to testify the sealing performance of the grout,such as instant gelling ability(IGA) and anti-dispersion ability(ADA). In the experiment, dispersion was restricted in the downstream of the channel with a high turbulence intensity. The influences of ADA and IGA were therefore decoupled and evaluated separately. Experimental results revealed two distinctive sealing mechanisms of WIS. For a low initial velocity of water, WIS turned the shear flow of water into an overall movement of a plug by absorbing water into the particles. For a high initial velocity and the situation that the particles reached the outlet before sufficiently expanding, WIS modified the rheology of the water in the channel and reduced its velocity till the static state. The distinctive feature of WIS brings a reformation on the sealing mechanism and provides an effective way to control water inflow with high pressure and velocity. 展开更多
关键词 WIS grout material Grouting treatment Water inflow sealing mechanism flow regularity
下载PDF
SEALAutoAnalyzer3流动注射分析仪在线测定水中氰化物研究 被引量:4
17
作者 齐小红 《环境与发展》 2017年第8期134-134,136,共2页
目的:将SEAL Auto Analyzer3流动注射分析仪应用于水中氰化物检测。方法:自动进样器采集样品和标准样,数据处理系统自动处理分析数据。结果:0μg/L-100μg/L线性区间,检出限为0.086μg/L,加标回收率为98%-102%,精密度和准确度较高,检出... 目的:将SEAL Auto Analyzer3流动注射分析仪应用于水中氰化物检测。方法:自动进样器采集样品和标准样,数据处理系统自动处理分析数据。结果:0μg/L-100μg/L线性区间,检出限为0.086μg/L,加标回收率为98%-102%,精密度和准确度较高,检出限也低于传统分光光度法。结论:SEAL Auto Analyzer3流动注射分析仪在水中氰化物测定应用中,快速省时、分析效率高,适用大规模样品检测,在水中氰化物测定应用中具有很好的推广应用价值。 展开更多
关键词 sealAutoAnalyzer3流动注射分析仪 氰化物 流动注射 在线测定
下载PDF
Effect of Sealing Air on Oil Droplet and Oil Film Motions in Bearing Chamber
18
作者 SUN Heng-chao CHEN Guo-ding +1 位作者 YOU Hao CHEN Jun-yu 《International Journal of Plant Engineering and Management》 2013年第3期130-139,共10页
Beating chamber is one of important components that support aero-engine rotors and research on oil droplet and oil film motions is an important part of bearing chamber lubrication and heat transfer design. Consid- eri... Beating chamber is one of important components that support aero-engine rotors and research on oil droplet and oil film motions is an important part of bearing chamber lubrication and heat transfer design. Consid- ering the pressure of sealing air is an important operating condition that affects the oil droplet and oil film mo- tions, the effect of sealing air pressure on airflow in bearing chamber is investigated in this paper firstly ; and then based on the air velocity and air/wall shear force, the oil droplet moving in core air, deposition of oil droplet im- pact on wall as well as velocity and thickness of oil film are analyzed secondly; the effect of sealing air pressure on oil droplet velocity and trajectory, deposition mass and momentum, as well as oil film velocity and thickness is discussed. The work presented in this paper is conducive to expose the oil/air two phase lubrication mechanism and has certain reference value to guide design of secondary air/oil system. 展开更多
关键词 AERO-ENGINE bearing chamber sealing air two phase flow DROPLET oil film calculation drag coefficient film thickness model TRAJECTORY velocity
下载PDF
Research on 1:2 subharmonic resonance and bifurcation of nonlinear rotor-seal system
19
作者 李忠刚 陈予恕 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第4期499-510,共12页
The 1:2 subharmonic resonance of the labyrinth seals-rotor system is inves- tigated, where the low-frequency vibration of steam turbines can be caused by the gas exciting force. The empirical parameters of gas exciti... The 1:2 subharmonic resonance of the labyrinth seals-rotor system is inves- tigated, where the low-frequency vibration of steam turbines can be caused by the gas exciting force. The empirical parameters of gas exciting force of the Muszynska model are obtained by using the results of computational fluid dynamics (CFD). Based on the multiple scale method, the 1:2 subharmonic resonance response of the dynamic system is gained by truncating the system with three orders. The transition sets and the local bifurcations diagrams of the dynamics system are presented by employing the singular theory analysis. Meanwhile, the existence conditions of subharmonic resonance non-zero solutions of the dynamic system are obtained, which provides a new theoretical basis in recognizing and protecting the rotor from the subharmonic resonant failure in the turbine machinery. 展开更多
关键词 rotor-seal 1:2 subharmonic resonance flow field computation gas flowexciting force SINGULARITY
下载PDF
间隙密封被动活塞式气体流量标准装置量值溯源方法
20
作者 陈超 宋进 朱碧玉 《计量学报》 CSCD 北大核心 2024年第5期692-697,共6页
间隙密封被动活塞式气体流量标准装置具有操作简单、测量效率高、无水银密封、易于携带和具有自动温压补偿功能等优点,在气体微小流量测量中广泛使用。被动活塞的上下往复运动对测量管路内的压力会产生波动,直接用流量测量法对间隙密封... 间隙密封被动活塞式气体流量标准装置具有操作简单、测量效率高、无水银密封、易于携带和具有自动温压补偿功能等优点,在气体微小流量测量中广泛使用。被动活塞的上下往复运动对测量管路内的压力会产生波动,直接用流量测量法对间隙密封被动活塞式气体流量标准装置进行量值溯源还存在一些困难。针对这一情况,提出了一种利用几何测量法对间隙密封被动活塞式气体流量标准装置进行量值溯源的新方法,对几何测量溯源法进行了不确定度评估,并与国外相关机构进行了比对验证。结果表明,利用几何测量法对间隙密封被动活塞式气体流量标准装置进行溯源的方法是可行的。 展开更多
关键词 流量测量 气体流量标准装置 间隙密封 被动活塞 量值溯源
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部