期刊文献+
共找到528,639篇文章
< 1 2 250 >
每页显示 20 50 100
Meter-Scale Thin-Walled Structure with Lattice Infill for Fuel Tank Supporting Component of Satellite:Multiscale Design and Experimental Verification
1
作者 Xiaoyu Zhang Huizhong Zeng +6 位作者 Shaohui Zhang Yan Zhang Mi Xiao Liping Liu Hao Zhou Hongyou Chai Liang Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期201-220,共20页
Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be f... Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts. 展开更多
关键词 thin-walled structure lattice infill supporting component selective laser melting SATELLITE
下载PDF
Boundary Element Analysis forModeⅢCrack Problems of Thin-Walled Structures from Micro-to Nano-Scales 被引量:1
2
作者 Bingrui Ju Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2677-2690,共14页
This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements... This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime. 展开更多
关键词 Boundary element nearly singular integral thin-walled structure mode III crack
下载PDF
LOCALIZED ANALYSIS OF THIN-WALLED STRUCTURE’S BUCKLING/INITIAL POST-BUCKLING AND ITS ACCURACY
3
作者 Huang Baozong Yang Wencheng Shen Xiangfu (Northeast University of Technology) 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1991年第2期162-168,共7页
A method of localization is proposed to lower the high order of equations in FEM calcula- tion for the stability of a complex thin-walled structure.The localized analysis enables us to obtain both the upper and lower ... A method of localization is proposed to lower the high order of equations in FEM calcula- tion for the stability of a complex thin-walled structure.The localized analysis enables us to obtain both the upper and lower limits for the bifurcating point in a whole linear elastic structural system,as well as an ap- proximate solution to asymptotic post-buckling problem.Some numerical examples are included. 展开更多
关键词 buckling of a thin-walled structure localized analysis upper and lower limits
下载PDF
Transformation Matrix for Combined Loads Applied to Thin-Walled Structures
4
作者 Abdelraouf M. Sami Alsheikh David William Alan Rees 《World Journal of Mechanics》 2022年第6期65-78,共14页
This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with... This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with respect to the shear centre is derived, this accounting for the bimoments that develop due to the way the combined loads are applied. This and the authors’ earlier paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution to the theory of thin-walled, open-section structures bearing combined loading. The earlier work identified arbitrary loading with the section’s area properties that are necessary to axial and shear stress calculations within the structure’s thin walls. In the previous paper attention is paid to the relevant axes of loading and to the transformations of loading required between axes for stress calculations arising from tension/compression, bending, torsion and shear. The derivation of the general transformation matrix applies to all types of loadings including, axial tensile and compression forces, transverse shear, longitudinal bending. One application, representing all these load cases, is given of a simple channel cantilever with an eccentrically located end load. 展开更多
关键词 thin-walled structure Open Sections Transformation Matrix Load Transformation Combined Load Transformation Shear Centre WARPING BIMOMENT Sectorial Area Properties
下载PDF
Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures 被引量:5
5
作者 Shaoqiang Xu Weiwei Li +2 位作者 Lin Li Tao Li Chicheng Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期929-947,共19页
Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are propose... Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are proposed to enhance structural energy absorption performance.The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load.The theoreticalmodel of themean crushing force is also derived based on the simplified super folded element theory.The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures.It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes.Furthermore,multiobjective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm,and the corresponding Pareto front diagram is obtained.This research provides a new idea for the crashworthiness design of thin-walled structures. 展开更多
关键词 Bionic structure crashworthiness design hierarchical tube multi-objective optimization
下载PDF
Elastoplastic analysis of thin-walled structures in reservoir area
6
作者 段绍伟 罗迎社 朱育雄 《Journal of Central South University》 SCIE EI CAS 2008年第S1期342-345,共4页
In the structural design of the high pier,in order to analyze the strength and structure stability,the pier was often considered a thin-walled structure.Elastoplastic incremental theory was used to establish the model... In the structural design of the high pier,in order to analyze the strength and structure stability,the pier was often considered a thin-walled structure.Elastoplastic incremental theory was used to establish the model of elastoplastic stability of high pier.By considering the combined action of pile,soil and pier together,the destabilization bearing capacity was calculated by using 3-D finite element method(3-D FEM) for piers with different pile and section height.Meanwhile,the equivalent stress in different sections of pier was computed and the processor of destabilization was discussed.When the pier is lower,the bearing capacity under mutual effect of pile,soil and pier is less than the situation when mutual effect is not considered;when the pier is higher,their differences are not conspicuous.Along with the increase of the cross-sectional height,the direction of destabilization bearing capacity is varied and the ultimate capacity is buildup.The results of a stability analysis example are almost identical with the practice. 展开更多
关键词 high PIER thin-walled structure INCREMENT theory ELASTOPLASTIC FINITE ELEMENT analysis stability
下载PDF
ON SOME PROBLEMS IN DYNAMIC COMPUTATION FOR THIN-WALLED STRUCTURES
7
作者 成祥生 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第7期697-702,共6页
This article discusses the problems of the dynamic computation for thin-walled structures such as thin plates and thin shells under impact load to find the dynamic factor mainly. In calculation we take into account th... This article discusses the problems of the dynamic computation for thin-walled structures such as thin plates and thin shells under impact load to find the dynamic factor mainly. In calculation we take into account the effect of the mass of the striking object and the system of thin-walled structures to be struck and transform the distributed mass of thin-walled structures into only one concentrated 'equivalent mass' by the method of reduced mass. Accordingly we derive the dynamic factor for the system of thin-walled structures under impact load. 展开更多
关键词 Domes and Shells ELASTICITY Mathematical Models structural Analysis Dynamic Response
下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
8
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by unifing respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (A RE ) of the S EA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the A RE of the S EA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 GA-BP混合算法 能量吸收特性 预测模型 薄壁结构 BP神经网络模型 神经网络预测 收敛速度 预测误差
下载PDF
Contrastive analysis and crashworthiness optimization of two composite thin-walled structures 被引量:4
9
作者 谢素超 周辉 +1 位作者 梁习锋 任鑫 《Journal of Central South University》 SCIE EI CAS 2014年第11期4386-4394,共9页
For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can b... For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF. 展开更多
关键词 结构耐撞性 优化 能量吸收装置 KRIGING 薄壁 复合 安全保护 代理模型
下载PDF
Dynamic stiffness for thin-walled structures by power series
10
作者 ZHU Bin LEUNG A.Y.T. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第8期1351-1357,共7页
The dynamic stiffness method is introduced to analyze thin-walled structures including thin-walled straight beams and spatial twisted helix beam. A dynamic stiffness matrix is formed by using frequency dependent shape... The dynamic stiffness method is introduced to analyze thin-walled structures including thin-walled straight beams and spatial twisted helix beam. A dynamic stiffness matrix is formed by using frequency dependent shape functions which are exact solutions of the governing differential equations. With the obtained thin-walled beam dynamic stiffness matrices, the thin-walled frame dynamic stiffness matrix can also be formulated by satisfying the required displacements compatibility and forces equilib-rium, a method which is similar to the finite element method (FEM). Then the thin-walled structure natural frequencies can be found by equating the determinant of the system dynamic stiffness matrix to zero. By this way, just one element and several elements can exactly predict many modes of a thin-walled beam and a spatial thin-walled frame, respectively. Several cases are studied and the results are compared with the existing solutions of other methods. The natural frequencies and buckling loads of these thin-walled structures are computed. 展开更多
关键词 动态刚度模型 薄壁结构 幂级数 弯折
下载PDF
Study of Impact Resistance Based on Porcupine Quills Bionic Thin-walled Structure 被引量:1
11
作者 Tianshu Huang Zhengyu Mao +2 位作者 Lijun Chang Xingyuan Huang Zhihua Cai 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期1942-1955,共14页
Using an electron microscope to observe the microstructure of a porcupine quills cross-section and a bionic method,a new bionic structure was proposed.The performance of the structure in terms of energy absorption,max... Using an electron microscope to observe the microstructure of a porcupine quills cross-section and a bionic method,a new bionic structure was proposed.The performance of the structure in terms of energy absorption,maximum impact force withstood,and impact force efficiency was evaluated using Ansys finite element simulation software to simulate the structure's impact.To examine the impact of ribs on the structural performance of the bionic porcupine quills,a control structure was developed.According to the results of the finite element simulation,the presence of ribs in the Bionic porcupine quills structure can transfer stress uniformly to the overall structure and share stress for some of the rupture-prone regions.Ribs reduce stress concentration in specific areas and increase the impact force efficiency of the structure.The SEA and IFE values of bionic porcupine quills were 30.01 kJ/kg and 84.22%,respectively.The structure is then optimized for parameter design in order to find the optimal structure by response surface in order to improve the structure's SEA and decrease its MIF.In order to evaluate the precision of the response surface,the optimal structure predicted is validated using finite element simulation. 展开更多
关键词 Bionic structure design thin-walled structure Impact resistance Specific energy absorption Multi-objective optimization
原文传递
Geometric Accuracy and Energy Absorption Characteristics of 3D Printed Continuous Ramie Fiber Reinforced Thin-Walled Composite Structures
12
作者 Kui Wang Hao Lin +5 位作者 Antoine Le Duigou Ruijun Cai Yangyu Huang Ping Cheng Honghao Zhang Yong Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期147-158,共12页
The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In additi... The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In addition,additive manufacturing technology provides a favorable process foundation for its realization.In this study,the printability and energy absorption properties of 3D printed continuous fiber reinforced thin-walled structures with different configurations were investigated.The results suggested that a low printing speed and a proper layer thickness would mitigate the printing defects within the structures.The printing geometry accuracy of the structures could be further improved by rounding the sharp corners with appropriate radii.This study successfully fabricated structures with vari-ous configurations characterized by high geometric accuracy through printing parameters optimization and path smoothing.Moreover,the compressive property and energy absorption characteristics of the structures under quasi-static axial compression were evaluated and compared.It was found that all studied thin-walled structures exhibited progressive folding deformation patterns during compression.In particular,energy absorption process was achieved through the combined damage modes of plastic deformation,fiber pullout and delamination.Furthermore,the com-parison results showed that the hexagonal structure exhibited the best energy absorption performance.The study revealed the structure-mechanical property relationship of 3D printed continuous fiber reinforced composite thin-walled structures through the analysis of multiscale failure characteristics and load response,which is valuable for broadening their applications. 展开更多
关键词 Additive manufacturing Continuous fiber BIOCOMPOSITE thin-walled structure Geometric accuracy Energy absorption
下载PDF
Layout design of thin-walled structures with lattices and stiffeners using multi-material topology optimization 被引量:1
13
作者 Yang LI Tong GAO +3 位作者 Qianying ZHOU Ping CHEN Dezheng YIN Weihong ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第4期496-509,共14页
In this paper,the thin-walled structures with lattices and stiffeners manufactured by additive manufacturing are investigated.A design method based on the multi-material topology optimization is proposed for the simul... In this paper,the thin-walled structures with lattices and stiffeners manufactured by additive manufacturing are investigated.A design method based on the multi-material topology optimization is proposed for the simultaneous layout optimization of the lattices and stiffeners in thin-walled structures.First,the representative lattice units of the selected lattices are equivalent to the virtual homogeneous materials whose effective elastic matrixes are achieved by the energy-based homogenization method.Meanwhile,the stiffeners are modelled using the solid material.Subsequently,the multi-material topology optimization formulation is established for both the virtual homogeneous materials and solid material to minimize the structural compliance under mass constraint.Thus,the optimal layout of both the lattices and stiffeners could be simultaneously attained by the optimization procedure.Two applications,the aircraft panel structure and the equipment mounting plate,are dealt with to demonstrate the detailed design procedure and reveal the effect of the proposed method.According to numerical comparisons and experimental results,the thin-walled structures with lattices and stiffeners have significant advantages over the traditional stiffened thin-walled structures and lattice sandwich structures in terms of static,dynamic and anti-instability performance. 展开更多
关键词 Layout design Thin walled structures Topology optimization LATTICE STIFFENER
原文传递
Vibration signal-based chatter identification for milling of thin-walled structure 被引量:4
14
作者 Wenping MOU Shaowei ZHU +1 位作者 Zhenxi JIANG Ge SONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期204-214,共11页
In high speed milling aeronautical part,tool condition monitoring(TCM)is very important,because it is prone to get a chatter owing to the low stiffness of thin-walled structures.And the TCM is key technology for autom... In high speed milling aeronautical part,tool condition monitoring(TCM)is very important,because it is prone to get a chatter owing to the low stiffness of thin-walled structures.And the TCM is key technology for automated machining.In this paper,aiming to chatter monitoring in thin-walled structure milling,a variational mode decomposition–energy distribution(VMD-ED)method is proposed to improve the identification accuracy.And a moving average root mean square–mean value(MARMS-MV)identification method and a variational mode decomposition–energy entropy(VMD-EE)identification method are also tested.Identification accuracy and computing time of the three methods are compared.The vibration signals collected from the spindle and worktable are also contrasted.The conducted experimental study shows that,the proposed VMD-ED method offers an identification method for chatter monitoring with greater sensitivity,better stability and less computing time,and mounting the vibration sensor on worktable is better than spindle for a chatter monitoring system. 展开更多
关键词 Chatter MILLING thin-walled structure Tool condition monitoring VIBRATION
原文传递
Stiffeners layout design of thin-walled structures with constraints on multi-fastener joint loads 被引量:5
15
作者 Jie HOU Jihong ZHU +2 位作者 Fei HE Weihong ZHANG Wenjie GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1441-1450,共10页
The purpose of this paper is to present an extended topology optimization method for the stiffeners layout design of aircraft assembled structures. Multi-fastener joint loads and manufacturing constraints are consider... The purpose of this paper is to present an extended topology optimization method for the stiffeners layout design of aircraft assembled structures. Multi-fastener joint loads and manufacturing constraints are considered simultaneously. On one hand, the joint loads are calculated and constrained within a limited value to avoid the failure of fasteners. On the other hand, the manufacturing constraints of the material distribution in the machining directions of stiffeners are implemented by an improved piecewise interpolation based on a beveled cut-surface. It is proven that the objective function is strictly continuous and differentiable with respect to the piecewise interpolation. The effects of the extended method with two different constraints are highlighted by typical numerical examples. Compared with the standard topology optimization, the final designs have clearly shown the layout of stiffeners and the joint loads have been perfectly constrained to a satisfying level. 展开更多
关键词 Joint load constraint Manufacturing constraint Stiffeners thin-walled structures Topology optimization
原文传递
Estimation method for random sonic fatigue life of thin-walled structure of a combustor liner based on stress probability distribution 被引量:1
16
作者 SHA Yun-dong GUO Xiao-peng +1 位作者 LIAO Lian-fang XIE Li-juan 《航空动力学报》 EI CAS CSCD 北大核心 2011年第4期727-734,共8页
As to the sonic fatigue problem of an aero-engine combustor liner structure under the random acoustic loadings,an effective method for predicting the fatigue life of a structure under random loadings was studied.First... As to the sonic fatigue problem of an aero-engine combustor liner structure under the random acoustic loadings,an effective method for predicting the fatigue life of a structure under random loadings was studied.Firstly,the probability distribution of Von Mises stress of thin-walled structure under random loadings was studied,analysis suggested that probability density function of Von Mises stress process accord approximately with two-parameter Weibull distribution.The formula for calculating Weibull parameters were given.Based on the Miner linear theory,the method for predicting the random sonic fatigue life based on the stress probability density was developed,and the model for fatigue life prediction was constructed.As an example,an aero-engine combustor liner structure was considered.The power spectrum density(PSD) of the vibrational stress response was calculated by using the coupled FEM/BEM(finite element method/boundary element method) model,the fatigue life was estimated by using the constructed model.And considering the influence of the wide frequency band,the calculated results were modified.Comparetive analysis shows that the estimated results of sonic fatigue of the combustor liner structure by using Weibull distribution of Von Mises stress are more conservative than using Dirlik distribution to some extend.The results show that the methods presented in this paper are practical for the random fatigue life analysis of the aeronautical thin-walled structures. 展开更多
关键词 thin-walled structure sonic fatigue life estimation probability density function(PDF) power spectrum density(PSD)
原文传递
Carbon Emission Effects Driven by Evolution of Chinese Dietary Structure from 1987 to 2020 被引量:1
17
作者 ZHU Yuanyuan ZHANG Yan ZHU Xiaohua 《Chinese Geographical Science》 SCIE CSCD 2024年第1期181-194,共14页
Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research ob... Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern. 展开更多
关键词 dietary structure structural evolution carbon emission effects carbon neutrality China
下载PDF
A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods:antioxidant and bile acid-binding capacity 被引量:4
18
作者 Qiaoyun Li Zuman Dou +5 位作者 Qingfei Duan Chun Chen Ruihai Liu Yueming Jiang Bao Yang Xiong Fu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期494-505,共12页
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic... In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods. 展开更多
关键词 Sea buckthorn Extraction method structure Rheological properties Antioxidant activity Bile acid binding capacity
下载PDF
Tuning electronic structure of RuO_(2)by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 被引量:1
19
作者 Qing Qin Tiantian Wang +7 位作者 Zijian Li Guolin Zhang Haeseong Jang Liqiang Hou Yu Wang Min Gyu Kim Shangguo Liu Xien Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期94-102,I0003,共10页
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ... The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER. 展开更多
关键词 ELECTROCATALYST Acidic oxygen evolution reaction Electronic structure engineering DURABILITY Reaction barrier
下载PDF
Multi-Material Topology Optimization for Spatial-Varying Porous Structures 被引量:1
20
作者 Chengwan Zhang Kai Long +4 位作者 Zhuo Chen Xiaoyu Yang Feiyu Lu Jinhua Zhang Zunyi Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期369-390,共22页
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu... This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures. 展开更多
关键词 Topology optimization porous structures local volume fraction augmented lagrangian multiple materials
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部