城市地下管廊内布设了大量的管线,如燃气管道、网络通讯线路、电力线路等,由于地下环境复杂多变,存在着气体泄漏、爆炸、火灾等安全风险。针对这些问题,提出一种基于窄带物联网技术(Narrow Band Internet of Things,NB-IoT)的地下管廊...城市地下管廊内布设了大量的管线,如燃气管道、网络通讯线路、电力线路等,由于地下环境复杂多变,存在着气体泄漏、爆炸、火灾等安全风险。针对这些问题,提出一种基于窄带物联网技术(Narrow Band Internet of Things,NB-IoT)的地下管廊环境监测系统。该系统采用先进的传感器技术、NB-IoT技术、软件技术,系统主要分为数据采集模块、物联网云平台、远程监测系统三部分。数据采集模块以STM32作为主控单元连接各个传感器,采集温度、湿度、水位、可燃气体等数据,经过处理后利用NB-IoT网络上传到物联网云平台,远程监测系统调用物联网云平台的数据接口进行远程显示与预警。实验结果表明,系统在降低系统总体功耗的同时,能够实时、稳定地进行地下管廊环境监测,提前预防可能存在的风险。展开更多
随着物联网技术的飞速发展,窄带物联网(Narrow Band Internet of Things,NB-IoT)作为一种低功耗、广覆盖、大连接的无线通信技术,逐渐成为连接物理世界与数字世界的桥梁。然而,在实际应用中,NB-IoT信号面临着诸如信号衰减、干扰、覆盖...随着物联网技术的飞速发展,窄带物联网(Narrow Band Internet of Things,NB-IoT)作为一种低功耗、广覆盖、大连接的无线通信技术,逐渐成为连接物理世界与数字世界的桥梁。然而,在实际应用中,NB-IoT信号面临着诸如信号衰减、干扰、覆盖不均等挑战。这些挑战不仅影响用户体验,还限制了物联网应用的进一步发展。因此,研究面向物联网的NB-IoT信号优化方法具有重要意义。文章深入研究面向物联网的NB-IoT信号优化方法,提出多种有效的优化策略和技术手段。展开更多
基于物联大数据赋能的业务流程能够更快更准地感知物理世界并及时做出响应的需求突现,提出一种物联网(Internet of Things,IoT)感知的业务微流程建模方法。首先,以单个IoT对象为中心建模,融合MAPE-K(monitor,analysis,plan,execution an...基于物联大数据赋能的业务流程能够更快更准地感知物理世界并及时做出响应的需求突现,提出一种物联网(Internet of Things,IoT)感知的业务微流程建模方法。首先,以单个IoT对象为中心建模,融合MAPE-K(monitor,analysis,plan,execution and knowledge base,MAPE-K)模型思想,将IoT对象实例生命周期的行为状态与微流程实例状态一一映射,实现对单个IoT对象的环形自动监控和调节;其次,基于从IoT传感设备获取的数据,定义基于SASE+语言的业务规则,提取对业务流程有意义的业务事件,避免了无关事件对宏流程的干扰;最后,通过设计一个微流程建模工具原型系统,结合真实案例分析,验证了提出建模方法的有效性,实现了业务流程与IoT实时流式感知数据的结合,并显著减少了宏流程需要处理的业务事件数量。展开更多
由于地址跳变是物联网主动防御的一种有效手段,但因跳变资源匮乏、可预见性以及数据包混淆度低已经成为制约物联网地址跳变的主要问题。为此,提出一种基于双模式端址跳变的主动防御方法。该方法设计了双模式端址选择算法,通过动态确定...由于地址跳变是物联网主动防御的一种有效手段,但因跳变资源匮乏、可预见性以及数据包混淆度低已经成为制约物联网地址跳变的主要问题。为此,提出一种基于双模式端址跳变的主动防御方法。该方法设计了双模式端址选择算法,通过动态确定虚拟端址生成策略,以通信时间为阈值,扩大端址跳变空间,从而解决地址池资源受限问题。同时,还构建了双虚拟端址跳变方法,通过动态分配和同步虚拟接收和发送地址,提升数据包混淆度,增强跳变的不可预见性。并且基于SDN(Software Defined Network)设计了流表双向同步机制,实现流表的动态下发和同步,以保证端址跳变的一致性。实验结果表明,该方法能有效提升地址跳变的多样性和不可预测性,显著增强抵御嗅探攻击的能力。展开更多
Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the...Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the effectiveness of migratory phototropic pest control. However, since the SIL is connected to the Internet, it is vulnerable to various security issues.These issues can lead to serious consequences, such as tampering with the parameters of SIL, illegally starting and stopping SIL,etc. In this paper, we describe the overall security requirements of SIL-IoT and present an extensive survey of security and privacy solutions for SIL-IoT. We investigate the background and logical architecture of SIL-IoT, discuss SIL-IoT security scenarios, and analyze potential attacks. Starting from the security requirements of SIL-IoT we divide them into six categories, namely privacy, authentication, confidentiality, access control, availability,and integrity. Next, we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions. Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT.展开更多
Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revol...Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services,ultimately enhancing human lives.This paper presents a new approach utilizing lightweight blockchain technology,effectively reducing the computational burden typically associated with conventional blockchain systems.By integrating this lightweight blockchain with IoT systems,substantial reductions in implementation time and computational complexity can be achieved.Moreover,the paper proposes the utilization of the Okamoto Uchiyama encryption algorithm,renowned for its homomorphic characteristics,to reinforce the privacy and security of IoT-generated data.The integration of homomorphic encryption and blockchain technology establishes a secure and decentralized platformfor storing and analyzing sensitive data of the supply chain data.This platformfacilitates the development of some business models and empowers decentralized applications to perform computations on encrypted data while maintaining data privacy.The results validate the robust security of the proposed system,comparable to standard blockchain implementations,leveraging the distinctive homomorphic attributes of the Okamoto Uchiyama algorithm and the lightweight blockchain paradigm.展开更多
In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the...In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the rapid development of artificial intelligence,semantic communication has attracted great attention as a new communication paradigm.However,for IoT devices,however,processing image information efficiently in real time is an essential task for the rapid transmission of semantic information.With the increase of model parameters in deep learning methods,the model inference time in sensor devices continues to increase.In contrast,the Pulse Coupled Neural Network(PCNN)has fewer parameters,making it more suitable for processing real-time scene tasks such as image segmentation,which lays the foundation for real-time,effective,and accurate image transmission.However,the parameters of PCNN are determined by trial and error,which limits its application.To overcome this limitation,an Improved Pulse Coupled Neural Networks(IPCNN)model is proposed in this work.The IPCNN constructs the connection between the static properties of the input image and the dynamic properties of the neurons,and all its parameters are set adaptively,which avoids the inconvenience of manual setting in traditional methods and improves the adaptability of parameters to different types of images.Experimental segmentation results demonstrate the validity and efficiency of the proposed self-adaptive parameter setting method of IPCNN on the gray images and natural images from the Matlab and Berkeley Segmentation Datasets.The IPCNN method achieves a better segmentation result without training,providing a new solution for the real-time transmission of image semantic information.展开更多
Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption i...Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT plays a critical role in driving these advancements by providing real-time data insights into the operational aspects of data centers.展开更多
文摘城市地下管廊内布设了大量的管线,如燃气管道、网络通讯线路、电力线路等,由于地下环境复杂多变,存在着气体泄漏、爆炸、火灾等安全风险。针对这些问题,提出一种基于窄带物联网技术(Narrow Band Internet of Things,NB-IoT)的地下管廊环境监测系统。该系统采用先进的传感器技术、NB-IoT技术、软件技术,系统主要分为数据采集模块、物联网云平台、远程监测系统三部分。数据采集模块以STM32作为主控单元连接各个传感器,采集温度、湿度、水位、可燃气体等数据,经过处理后利用NB-IoT网络上传到物联网云平台,远程监测系统调用物联网云平台的数据接口进行远程显示与预警。实验结果表明,系统在降低系统总体功耗的同时,能够实时、稳定地进行地下管廊环境监测,提前预防可能存在的风险。
文摘随着物联网技术的飞速发展,窄带物联网(Narrow Band Internet of Things,NB-IoT)作为一种低功耗、广覆盖、大连接的无线通信技术,逐渐成为连接物理世界与数字世界的桥梁。然而,在实际应用中,NB-IoT信号面临着诸如信号衰减、干扰、覆盖不均等挑战。这些挑战不仅影响用户体验,还限制了物联网应用的进一步发展。因此,研究面向物联网的NB-IoT信号优化方法具有重要意义。文章深入研究面向物联网的NB-IoT信号优化方法,提出多种有效的优化策略和技术手段。
文摘基于物联大数据赋能的业务流程能够更快更准地感知物理世界并及时做出响应的需求突现,提出一种物联网(Internet of Things,IoT)感知的业务微流程建模方法。首先,以单个IoT对象为中心建模,融合MAPE-K(monitor,analysis,plan,execution and knowledge base,MAPE-K)模型思想,将IoT对象实例生命周期的行为状态与微流程实例状态一一映射,实现对单个IoT对象的环形自动监控和调节;其次,基于从IoT传感设备获取的数据,定义基于SASE+语言的业务规则,提取对业务流程有意义的业务事件,避免了无关事件对宏流程的干扰;最后,通过设计一个微流程建模工具原型系统,结合真实案例分析,验证了提出建模方法的有效性,实现了业务流程与IoT实时流式感知数据的结合,并显著减少了宏流程需要处理的业务事件数量。
文摘由于地址跳变是物联网主动防御的一种有效手段,但因跳变资源匮乏、可预见性以及数据包混淆度低已经成为制约物联网地址跳变的主要问题。为此,提出一种基于双模式端址跳变的主动防御方法。该方法设计了双模式端址选择算法,通过动态确定虚拟端址生成策略,以通信时间为阈值,扩大端址跳变空间,从而解决地址池资源受限问题。同时,还构建了双虚拟端址跳变方法,通过动态分配和同步虚拟接收和发送地址,提升数据包混淆度,增强跳变的不可预见性。并且基于SDN(Software Defined Network)设计了流表双向同步机制,实现流表的动态下发和同步,以保证端址跳变的一致性。实验结果表明,该方法能有效提升地址跳变的多样性和不可预测性,显著增强抵御嗅探攻击的能力。
基金supported in part by the National Natural Science Foundation of China (62072248, 62072247)the Jiangsu Agriculture Science and Technology Innovation Fund (CX(21)3060)。
文摘Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the effectiveness of migratory phototropic pest control. However, since the SIL is connected to the Internet, it is vulnerable to various security issues.These issues can lead to serious consequences, such as tampering with the parameters of SIL, illegally starting and stopping SIL,etc. In this paper, we describe the overall security requirements of SIL-IoT and present an extensive survey of security and privacy solutions for SIL-IoT. We investigate the background and logical architecture of SIL-IoT, discuss SIL-IoT security scenarios, and analyze potential attacks. Starting from the security requirements of SIL-IoT we divide them into six categories, namely privacy, authentication, confidentiality, access control, availability,and integrity. Next, we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions. Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT.
文摘Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services,ultimately enhancing human lives.This paper presents a new approach utilizing lightweight blockchain technology,effectively reducing the computational burden typically associated with conventional blockchain systems.By integrating this lightweight blockchain with IoT systems,substantial reductions in implementation time and computational complexity can be achieved.Moreover,the paper proposes the utilization of the Okamoto Uchiyama encryption algorithm,renowned for its homomorphic characteristics,to reinforce the privacy and security of IoT-generated data.The integration of homomorphic encryption and blockchain technology establishes a secure and decentralized platformfor storing and analyzing sensitive data of the supply chain data.This platformfacilitates the development of some business models and empowers decentralized applications to perform computations on encrypted data while maintaining data privacy.The results validate the robust security of the proposed system,comparable to standard blockchain implementations,leveraging the distinctive homomorphic attributes of the Okamoto Uchiyama algorithm and the lightweight blockchain paradigm.
基金supported in part by the National Key Research and Development Program of China(Grant No.2019YFA0706200).
文摘In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the rapid development of artificial intelligence,semantic communication has attracted great attention as a new communication paradigm.However,for IoT devices,however,processing image information efficiently in real time is an essential task for the rapid transmission of semantic information.With the increase of model parameters in deep learning methods,the model inference time in sensor devices continues to increase.In contrast,the Pulse Coupled Neural Network(PCNN)has fewer parameters,making it more suitable for processing real-time scene tasks such as image segmentation,which lays the foundation for real-time,effective,and accurate image transmission.However,the parameters of PCNN are determined by trial and error,which limits its application.To overcome this limitation,an Improved Pulse Coupled Neural Networks(IPCNN)model is proposed in this work.The IPCNN constructs the connection between the static properties of the input image and the dynamic properties of the neurons,and all its parameters are set adaptively,which avoids the inconvenience of manual setting in traditional methods and improves the adaptability of parameters to different types of images.Experimental segmentation results demonstrate the validity and efficiency of the proposed self-adaptive parameter setting method of IPCNN on the gray images and natural images from the Matlab and Berkeley Segmentation Datasets.The IPCNN method achieves a better segmentation result without training,providing a new solution for the real-time transmission of image semantic information.
基金The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this research work through the Project Number(PSAU/2023/01/27268).
文摘Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT plays a critical role in driving these advancements by providing real-time data insights into the operational aspects of data centers.