期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sparse antenna array design methodologies:A review
1
作者 Pan Wu Yan-Hui Liu +1 位作者 Zhi-Qin Zhao Qing-Huo Liu 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第3期1-15,共15页
Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct ar... Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques. 展开更多
关键词 Clustered array Nonuniformly spaced array Sparse antenna array Synthesis method thinned array
下载PDF
Large Thinned Array Design Based on Multi-objective Cross Entropy Algorithm
2
作者 边莉 边晨源 王书民 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第4期437-442,共6页
To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clus... To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clustering algorithm with traditional cross entropy algorithm, and specific program flow of the algorithm is given.Using the algorithm, large thinned array(200 elements) given sidelobe level(-10,-19 and-30 d B) problem is solved successfully. Compared with the traditional statistical algorithms, the optimization results of the algorithm validate that the number of feed array elements reduces by 51%, 11% and 6% respectively. In addition, compared with the particle swarm optimization(PSO) algorithm, the number of feed array elements from the algorithm is more similar, but the algorithm is more efficient. 展开更多
关键词 thinned array multi-objective optimization cross entropy(CE) algorithm particle swarm optimization(PSO) algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部