Medical image segmentation is one of the key technologies in computer aided diagnosis. Due to the complexity and diversity of medical images, the wavelet multi-scale analysis is introduced into GVF (gradient vector fl...Medical image segmentation is one of the key technologies in computer aided diagnosis. Due to the complexity and diversity of medical images, the wavelet multi-scale analysis is introduced into GVF (gradient vector flow) snake model. The modulus values of each scale and phase angle values are calculated using wavelet transform, and the local maximum points of modulus values, which are the contours of the object edges, are obtained along phase angle direction at each scale. Then, location of the edges of the object and segmentation is implemented by GVF snake model. The experiments on some medical images show that the improved algorithm has small amount of computation, fast convergence and good robustness to noise.展开更多
Arabic Sign Language recognition is an emerging field of research. Previous attempts at automatic vision-based recog-nition of Arabic Sign Language mainly focused on finger spelling and recognizing isolated gestures. ...Arabic Sign Language recognition is an emerging field of research. Previous attempts at automatic vision-based recog-nition of Arabic Sign Language mainly focused on finger spelling and recognizing isolated gestures. In this paper we report the first continuous Arabic Sign Language by building on existing research in feature extraction and pattern recognition. The development of the presented work required collecting a continuous Arabic Sign Language database which we designed and recorded in cooperation with a sign language expert. We intend to make the collected database available for the research community. Our system which we based on spatio-temporal feature extraction and hidden Markov models has resulted in an average word recognition rate of 94%, keeping in the mind the use of a high perplex-ity vocabulary and unrestrictive grammar. We compare our proposed work against existing sign language techniques based on accumulated image difference and motion estimation. The experimental results section shows that the pro-posed work outperforms existing solutions in terms of recognition accuracy.展开更多
Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model compl...Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model complexity will grow quadratically with the number of input images.To alleviate the burden of this tracking paradigm and facilitate practical deployment of Transformer‐based trackers,we propose a dual pooling transformer tracking framework,dubbed as DPT,which consists of three components:a simple yet efficient spatiotemporal attention model(SAM),a mutual correlation pooling Trans-former(MCPT)and a multiscale aggregation pooling Transformer(MAPT).SAM is designed to gracefully aggregates temporal dynamics and spatial appearance information of multi‐frame templates along space‐time dimensions.MCPT aims to capture multi‐scale pooled and correlated contextual features,which is followed by MAPT that aggregates multi‐scale features into a unified feature representation for tracking prediction.DPT tracker achieves AUC score of 69.5 on LaSOT and precision score of 82.8 on Track-ingNet while maintaining a shorter sequence length of attention tokens,fewer parameters and FLOPs compared to existing state‐of‐the‐art(SOTA)Transformer tracking methods.Extensive experiments demonstrate that DPT tracker yields a strong real‐time tracking baseline with a good trade‐off between tracking performance and inference efficiency.展开更多
文摘Medical image segmentation is one of the key technologies in computer aided diagnosis. Due to the complexity and diversity of medical images, the wavelet multi-scale analysis is introduced into GVF (gradient vector flow) snake model. The modulus values of each scale and phase angle values are calculated using wavelet transform, and the local maximum points of modulus values, which are the contours of the object edges, are obtained along phase angle direction at each scale. Then, location of the edges of the object and segmentation is implemented by GVF snake model. The experiments on some medical images show that the improved algorithm has small amount of computation, fast convergence and good robustness to noise.
文摘Arabic Sign Language recognition is an emerging field of research. Previous attempts at automatic vision-based recog-nition of Arabic Sign Language mainly focused on finger spelling and recognizing isolated gestures. In this paper we report the first continuous Arabic Sign Language by building on existing research in feature extraction and pattern recognition. The development of the presented work required collecting a continuous Arabic Sign Language database which we designed and recorded in cooperation with a sign language expert. We intend to make the collected database available for the research community. Our system which we based on spatio-temporal feature extraction and hidden Markov models has resulted in an average word recognition rate of 94%, keeping in the mind the use of a high perplex-ity vocabulary and unrestrictive grammar. We compare our proposed work against existing sign language techniques based on accumulated image difference and motion estimation. The experimental results section shows that the pro-posed work outperforms existing solutions in terms of recognition accuracy.
基金the National Natural Science Foundation of China,Grant/Award Number:62006065the Science and Technology Research Program of Chongqing Municipal Education Commission,Grant/Award Number:KJQN202100634+1 种基金the Natural Science Foundation of Chongqing,Grant/Award Number:CSTB2022NSCQ‐MSX1202Chongqing Municipal Education Commission,Grant/Award Number:KJQN202100634。
文摘Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model complexity will grow quadratically with the number of input images.To alleviate the burden of this tracking paradigm and facilitate practical deployment of Transformer‐based trackers,we propose a dual pooling transformer tracking framework,dubbed as DPT,which consists of three components:a simple yet efficient spatiotemporal attention model(SAM),a mutual correlation pooling Trans-former(MCPT)and a multiscale aggregation pooling Transformer(MAPT).SAM is designed to gracefully aggregates temporal dynamics and spatial appearance information of multi‐frame templates along space‐time dimensions.MCPT aims to capture multi‐scale pooled and correlated contextual features,which is followed by MAPT that aggregates multi‐scale features into a unified feature representation for tracking prediction.DPT tracker achieves AUC score of 69.5 on LaSOT and precision score of 82.8 on Track-ingNet while maintaining a shorter sequence length of attention tokens,fewer parameters and FLOPs compared to existing state‐of‐the‐art(SOTA)Transformer tracking methods.Extensive experiments demonstrate that DPT tracker yields a strong real‐time tracking baseline with a good trade‐off between tracking performance and inference efficiency.