According to the cultivating practice ofLarix olgensis pulp plantation, IRR (Internal revenue rate) and NPV (Net present value) were taken as two economic indices to study the effect of cultivation measurements on eco...According to the cultivating practice ofLarix olgensis pulp plantation, IRR (Internal revenue rate) and NPV (Net present value) were taken as two economic indices to study the effect of cultivation measurements on economic benefit ofLarix olgensis pulp forest. The results showed that the economic benefit of this type of forest is closely related to rotation and site class. Higher economic benefit could be obtained when the rotation is shorter and site class is higher. The planting density also had an obvious influence on economic benefit. On the base of assuring survival rate and conserving rate, the less the fee used in soil preparation and young growth tending is, the higher the economic benefit is. The influence of determined six cultivation measures on economic benefit in sequence was the rotation—site class—density—management fee level—young growth tending intensity—soil preparation methods.展开更多
Cultivation of cash crops, such as cardamom (Elettaria cardamomum) in the forest understorey is a common practice in many tropical forests. Over time, cultivation may change forest structure and species composition, l...Cultivation of cash crops, such as cardamom (Elettaria cardamomum) in the forest understorey is a common practice in many tropical forests. Over time, cultivation may change forest structure and species composition, leading to gradual degradation of biodiversity and ecosystem services. Effective conservation of these forests requires an enhanced understanding of the demographic processes such as soil seed bank that may greatly influence future forest composition. We examined how the soil seed bank structure and composition responds to cardamom cultivation in a high conservation value Sri Lankan montane rain forest. Soil samples from natural forest with abandoned cardamom plantations (CP) and adjacent natural forest (NF) patches without cardamom were collected in dry and wet seasons. Soil samples were spread out in trays in a shade house and germination was recorded weekly for 19 weeks. The density of seeds in the soil seed bank was much higher in CP than NF. While grasses and forbs contributed the highest number and percentage of seeds in soils of both forest types, their densities in the soil seed bank were 9 and 2 times greater in the CP than the NF, respectively. Seeds of the non-native herbs Ageratina riparia and E. cardamomum were 4 and 20 times greater in the soil of CP, respectively. Seeds of light demanding tree species such as Macaranga indica were restricted to soils of CPs. Overstorey tree community of each forest type was poorly represented in their respective soil seed banks. The high density of seeds of pioneer trees and non-native herbs in the soil of CPs, combined with higher light transmission to the ground floor may exacerbate competition for resources with the seedlings of late successional trees of high conservation value. To overcome this barrier and enhance conservation value of the forest, restoration strategies may need to focus on transplanting seedlings of these species into forest with abandoned cardamom plantations.展开更多
This study reports the effects of shifting cultivation at slashing stage on soil physicochemical properties at Bandarban Sadar Upazila in Chittagong Hill Tracts of Bangladesh. At this initial stage of shifting cultiva...This study reports the effects of shifting cultivation at slashing stage on soil physicochemical properties at Bandarban Sadar Upazila in Chittagong Hill Tracts of Bangladesh. At this initial stage of shifting cultivation no general trend was found for moisture content, maximum water holding capacity, field capacity, dry and moist bulk density, parti- cle density for some chemical properties between shifting cultivated land and forest having similar soil texture. Organic matter was significantly 0.05) lower in 1-year and 3-year shifting cultivated lands and higher in 2-year shifting cultivation than in adjacent natural forest. Significant differences were also found for total N, exchangeable Ca, Mg and K and in CEC as well as for available P. Slashed area showed higher soil pH. Deterioration in land quality starts from burning of slashing materials and continues through subsequent stages of shifting cultivation.展开更多
Currently, transforming the mode of forest management and developing multiple forest management practices are actively encouraged in China. As one forest management type, ginseng cultivation under larch plantations ha...Currently, transforming the mode of forest management and developing multiple forest management practices are actively encouraged in China. As one forest management type, ginseng cultivation under larch plantations has been developed significantly in the east of Liaoning Province. However, research on the influence of the ecological environment for this mode of production is still deficient. Based on this, our study compares the plant diversity and soil properties in the ginseng cultivation under larch plantations(LG) with larch plantations(LP) and natural secondary forests(SF). First, we randomly selected three plots for each of the three stand types which have similar stand characteristics; then, we carried out a plant diversity survey and soil sampling in each of the nine plots. The results show that no significant difference was found in plant diversity between LG and LP, but theevenness of herbs was significantly lower in LG than LP. No obvious changes in soil physical properties were found in LG, but a significant decrease in most of the soil nutrient content was presented in LG. Furthermore, we found a correlation between plant diversity(H') and soil properties in the three kinds of stand types, especially between herbaceous plant diversity and soil properties. We conclude that ginseng cultivation under larch plantations has no obvious effect on plant diversity, except the herbaceous evenness. Soil fertility can be depleted significantly in LG, but physical structures are not affected. Moreover, maintaining the diversity of herbaceous plants and controlling the density of ginseng cultivation in LG by farmers are important for the ecological environment. Based on this study and its good comprehensive benefits and with the support of policy, we think this forest management type should be promoted moderately in the region.展开更多
A study was conducted at two pair sites of Chittagong Hill Tracts in Bangladesh to find out the effects of shifting cultivation on soil fungi and bacterial population. The first pair of sites with shifting culti-vatio...A study was conducted at two pair sites of Chittagong Hill Tracts in Bangladesh to find out the effects of shifting cultivation on soil fungi and bacterial population. The first pair of sites with shifting culti-vation and village common forest-managed by indigenous community was at Madhya Para in Rangamati district and the second pair of sites with the shifting cultivated land and village common forest at Ampu Para in Bandarban district of Chittagong Hill Tracts. At both the locations with two different land uses, soil textures in surface (0?10 cm) and sub-surface (10?20 cm) soils varied from sandy loam to sandy clay loam. Soil pH and moisture content were lower in shifting cultivated land com-pared to village common forest. The results also showed that both fungal and bacterial population in surface and subsurface soils was significantly (p ≤ 0.05) lower, in most cases, in shifting cultivated land compared to village common forest at both Madhya Para and Ampu Para. At Ranga-mati and Bandarban in shifting cultivated lands, Colletrotrichum and Fusarium fungi were absent and all the bacterial genus viz. Coccus, Bacillus and Streptococcus common in two different locations with dif-ferent land uses. Common identified fungi at both the land uses and locations were Aspergillus, Rhizopus, Trichoderma and Penicillium. Further study can be done on the other soil biota to understand the extent of environmental deterioration due to shifting cultivation.展开更多
To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfa...To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.展开更多
The impact of land consolidation on the soil microbial PLFA diversity is of great importance for understanding the effective arable land usage,improving agricultural ecological conditions and environment.In this study...The impact of land consolidation on the soil microbial PLFA diversity is of great importance for understanding the effective arable land usage,improving agricultural ecological conditions and environment.In this study,we collected the soil samples(0–20 cm)in experimental plots with 0(Z0),1(Z1a)and 4(Z4a)years of land consolidation in the forest station of Ningbo City,Zhejiang Province,southeastern China.The results were analyzed using ANOVA for randomized block design.Compared with control(Z0),the soil pH value under Z1a treatment increased by 14.6%,soil organic carbon(SOC)content decreased by 65.4%,so did the PLFA contents and relative abundance of all the microbial PLFA diversity(P<0.05),respectively.Meanwhile,for the Z1a treatment,the ratio of fungi to bacteria(F/B)significantly decreased by 35.9%(P<0.05),while the ratio of Gram-positive bacteria to Gram-negative bacteria(G+/G−)signific antly increased by 56.1%.This was strongly related to the increased soil pH values and the decrease of SOC.The Shannon index(H)and evenness index(E)of soil microbial PLFA diversity were significantly decreased after land consolidation(P<0.05).Compared to the Z1 treatment,the microbial PLFA diversity was improved slightly.Therefore,the land consolidation could significantly affect the composition of soil microbial PLFA diversity,and decrease the soil ecosystem stability.展开更多
Thinning is a widely used forest management tool but systematic research has not been carried out to verify its eff ects on carbon storage and plant diversity at the ecosystem level.In this study,the eff ect of thinni...Thinning is a widely used forest management tool but systematic research has not been carried out to verify its eff ects on carbon storage and plant diversity at the ecosystem level.In this study,the eff ect of thinning was assessed across seven thinning intensities(0,10,15,20,25,30 and 35%)in a low-quality secondary forest in NE China over a ten-year period.Thinning aff ected the carbon storage of trees,and shrub,herb,and soil layers(P<0.05).It fi rst increased and then decreased as thinning intensity increased,reaching its maximum at 30%thinning.Carbon storage of the soil accounted for more than 64%of the total carbon stored in the ecosystem.It was highest in the upper 20-cm soil layer.Thinning increased tree species diversity while decreasing shrub and herb diversities(P<0.05).Redundancy analysis and a correlation heat map showed that carbon storage of tree and shrub layers was positively correlated with tree diversity but negatively with herb diversity,indicating that the increase in tree diversity increased the carbon storage of natural forest ecosystems.Although thinning decreased shrub and herb diversities,it increased the carbon storage of the overall ecosystem and tree species diversity of secondary forest.Maximum carbon storage and the highest tree diversity were observed at a thinning intensity of 30%.This study provides evidence for the ecological management of natural and secondary forests and improvement of ecosystem carbon sinks and biodiversity.展开更多
Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest m...Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.展开更多
Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importanc...Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importance of structure-based.Aims:Our objectives were to define the direction of structure-based forest management.Subsequently,we investigated the relationships between forest structure and the regeneration,growth,and mortality of trees under different thinning treatments.Ultimately,the drivers of forest structural change were explored.Methods:On the basis of 92 sites selected from northeastern China,with different recovery time (from 1 to 15years) and different thinning intensities (0–59.9%) since the last thinning.Principal component analysis (PCA)identified relationships among factors determining forest spatial structure.The structural equation model (SEM)was used to analyze the driving factors behind the changes in forest spatial structure after thinning.Results:Light thinning (0–20%trees removed) promoted forest regeneration,and heavy thinning (over 35% of trees removed) facilitated forest growth.However,only moderate thinning (20%–35%trees removed) created a reasonable spatial structure.While dead trees were clustered,and they were hardly affected by thinning intensity.Additionally,thinning intensity,recovery time,and altitude indirectly improve the spatial structure of the forest by influencing diameter at breast height (DBH) and canopy area.Conclusion:Creating larger DBH and canopy area through thinning will promote the formation of complex forest structures,which cultivates healthy and stable forests.展开更多
To overcome the issues of high cost and continuous cropping obstacles in facility cultivation of Panax notoginseng_ F. H. Chen, satisfy the market demand, save the production cost, improve the utilization rate of fore...To overcome the issues of high cost and continuous cropping obstacles in facility cultivation of Panax notoginseng_ F. H. Chen, satisfy the market demand, save the production cost, improve the utilization rate of forest land, increase the in-come of forest farmers and protect the ecological environment, the cultivation tech-niques of high-quality P. notoginseng seedlings from Wenshan, Yunnan under four kinds of forests (walnut forest, China fir forest, grape forest and kiwi forest) were in-vestigated in this study. The results showed that the height growth, crown diameter, survival rate and 3-year-old tuber weight of P. notoginseng_under walnut forest were higher than those under the other three kinds of forests; the height growth, crown diameter, survival rate and 3-year-old tuber weight of P. notoginseng under China fir forest were higher than those under grape forest and kiwi forest; and the crown di-ameter and survival rate under grape forest were higher, and the height growth and tuber weight under grape forest were lower than those under kiwi forest. Walnut is a broad-leaved deciduous tree species, so large-scale cultivation of P. notoginseng_should be conducted under broadleaf deciduous forest with canopy density around 0.8, taking advantage of the cool environment and rich humus layer under forest. This cultivation technology could save labor, shade, fertilizer and other costs, and accord with the ecological habit and the growth rules of P. notoginseng, thus im-proving yield and achieving high economic benefit.展开更多
We investigated the effect of forest thinning on soil nitrogen mineralization, nitrification and transformation in a Cryptomeria japoni-ca plantation at high elevation to provide basic data for forest manage-ment. We ...We investigated the effect of forest thinning on soil nitrogen mineralization, nitrification and transformation in a Cryptomeria japoni-ca plantation at high elevation to provide basic data for forest manage-ment. We chose four study plots for control, light, medium and heavy thinning treatment, and three sub-plots for buried bag studies at similar elevations in each treatment plot to measure the net N mineralization and nitrification rates in situ. The contents of soil inorganic N (ammonium and nitrate) were similar between treatments, but all varied with season, reaching maxima in September 2003 and 2004. The seasonal maximum net Nmin rates after four treatments were 0.182, 0.246, 0.303 and 0.560 mg?kg-1?d-1 in 2003, and 0.242,0.258,0.411 and 0.671 mg?kg-1?d-1in 2004, respectively. These estimates are approximate with the lower annual rates of N mineralization for this region. Forest thinning can enhance net N mineralization and microbial biomass carbon. The percentage of annual rates of Nmin for different levels of forest thinning compared with the control plot were 13.4%, 59.8%and 154.2%in 2003, and 0.1%, 58.8%and 157.7%in 2004 for light, medium, and heavy thinning, respectively. These differences were related to soil moisture, temperature, precipita-tion, and soil and vegetation types. Well-planned multi-site comparisons, both located within Taiwan and the East-Asia region, could greatly im-prove our knowledge of regional patterns in nitrogen cycling.展开更多
Background:Herbs are an important part of the forest ecosystem,and their diversity and biomass can reflect the restoration of vegetation after forest thinning disturbances.Based on the near-mature secondary coniferous...Background:Herbs are an important part of the forest ecosystem,and their diversity and biomass can reflect the restoration of vegetation after forest thinning disturbances.Based on the near-mature secondary coniferous and broad-leaved mixed forest in Jilin Province Forestry Experimental Zone,this study analyzed seasonal changes of species diversity and biomass of the understory herb layer after different intensities of thinning.Results:The results showed that although the composition of herbaceous species and the ranking of importance values were affected by thinning intensity,they were mainly determined by seasonal changes.Across the entire growing season,the species with the highest importance values in thinning treatments included Carex pilosa,Aegopodium alpestre,Meehania urticifolia,and Filipendula palmata,which dominated the herb layer of the coniferous and broad-leaved mixed forest.The number of species,Margalef index,Shannon-Wiener index and Simpson index all had their highest values in May,and gradually decreased with months.Pielou index was roughly inverted“N”throughout the growing season.Thinning did not increase the species diversity.Thinning can promote the total biomass,above-and below-ground biomass.The number of plants per unit area and coverage were related to the total biomass,above-and below-ground biomass.The average height had a significantly positive correlation with herb biomass in May but not in July.However,it exerted a significantly negative correlation with herb biomass in September.The biomass in the same month increased with increasing thinning intensity.Total herb biomass,above-and below-ground biomass showed positive correlations with Shannon-Winner index,Simpson index and Pielou evenness index in May.Conclusions:Thinning mainly changed the light environment in the forest,which would improve the plant diversity and biomass of herb layer in a short time.And different thinning intensity had different effects on the diversity of understory herb layer.The findings provide theoretical basis and reference for reasonable thinning and tending in coniferous and broad-leaved mixed forests.展开更多
A brief overview of the system of forest inventory in China and its problems existed is given. Forest planning requires information about the current state of the forest resource. However, generally speaking, the info...A brief overview of the system of forest inventory in China and its problems existed is given. Forest planning requires information about the current state of the forest resource. However, generally speaking, the information collected in a periodic inventory may become obsolete already after the first thinning following. Therefore,in order to solve the problem, theory skeleton of thinning inventory technique and its approach in forest inventory,is presented in this paper, with an emphasis on the research and study developing currently thinning inventory.展开更多
Background:Chinese pine(Pinus tabuliformis Carr.)is one of the major afforestation species in northern China and plays a key role in restoring forest ecosystems and preserving soil and water.However,most Chinese pine ...Background:Chinese pine(Pinus tabuliformis Carr.)is one of the major afforestation species in northern China and plays a key role in restoring forest ecosystems and preserving soil and water.However,most Chinese pine plantations are experiencing ecological problems such as the low diversity of understory plants and difficulty in natural regeneration.Thinning has been widely used to maintain and improve a variety of forest ecosystem services from plantations.To date,however,few studies have been conducted to systematically determine the effects of thinning on understory plant diversity and the regeneration of Chinese pine in plantations.Methods:We conducted a literature search,and selected 22 publications covering a total of 83 treatments related to thinning effects on the species richness of understory plants and 15 publications covering a total of 43 treatments related to thinning effects on the regeneration of Chinese pine,in tree plantations of northern China.The data from the literature were synthesized and evaluated with meta-analysis approach to determine the treatment effects.Results:Compared with the control stands,thinning increased the species richness of shrubs and herbs by an average of 25.3%and 26.5%,respectively.While the varying thinning intensities all had significantly positive effects on the species richness of understory plants,only moderate thinning(30%–50%)had a positive effect on the density of regenerating seedlings and saplings of Chinese pine(60.2%).The species richness of understory plants was greatest after 14 years of thinning with an increase of 36.3%,whereas the density of regenerating Chinese pine seedlings and saplings reached a maximum after≥11 years of thinning with an increase of 76.5%,compared to that of the unthinned stands.Thinning in the half-mature plantations had the greatest effects on the understory shrub richness(44.1%)and the density of regenerating Chinese pine seedlings and saplings(86.5%).Both single and multiple thinning were found to significantly promote the species richness of understory plants and the density of regenerating Chinese pine seedlings and saplings,and the positive effects of thinning were greater in areas with a humidity index(HI)<30 than in areas with an HI≥30.In general,age group,planting density and recovery time were prominent factors affecting the species richness of understory plants,whereas the slope,HI and recovery time were the dominant controls of the density of regenerating Chinese pine seedlings and saplings,indicating differential effects of thinning on the species richness of understory plants and the regeneration capacity of Chinese pine in plantations.Conclusion:Thinning appears to be a feasible management measure to improve the understory plant diversity and regeneration capacity of Chinese pine in plantations.We postulate that moderate thinning in half-mature forest stands with an HI<30 can help effectively promote the species diversity of understory plants and the natural regeneration of Chinese pine,thereby maintaining a more resilient stand structure and the development of Chinese pine plantations.展开更多
To explore how to respond to seasonal freeze–thaw cycles on forest ecosystems in the context of climate change through thinning,we assessed the potential impact of thinning intensity on carbon cycle dynamics.By varyi...To explore how to respond to seasonal freeze–thaw cycles on forest ecosystems in the context of climate change through thinning,we assessed the potential impact of thinning intensity on carbon cycle dynamics.By varying the number of temperature cycles,the eff ects of various thinning intensities in four seasons.The rate of mass,litter organic carbon,and soil organic carbon(SOC)loss in response to temperature variations was examined in two degrees of decomposition.The unfrozen season had the highest decomposition rate of litter,followed by the frozen season.Semi-decomposed litter had a higher decomposition rate than undecomposed litter.The decomposition rate of litter was the highest when the thinning intensity was 10%,while the litter and SOC were low.Forest litter had a good carbon sequestration impact in the unfrozen and freeze–thaw seasons,while the converse was confi rmed in the frozen and thaw seasons.The best carbon sequestration impact was identifi ed in litter,and soil layers under a 20–25%thinning intensity,and the infl uence of undecomposed litter on SOC was more noticeable than that of semi-decomposed litter.Both litter and soil can store carbon:however,carbon is transported from undecomposed litter to semi-decomposed litter and to the soil over time.In summary,the best thinning intensity being 20–25%.展开更多
Thinning is a necessary and complex forestry activity.The complexity increases due to theoretical disagreements,contradictory recommendations,and errors of modern practice,which require confirmation through longtime e...Thinning is a necessary and complex forestry activity.The complexity increases due to theoretical disagreements,contradictory recommendations,and errors of modern practice,which require confirmation through longtime experiments.This article presents a summary of experimental results from plantations established 20–30 years ago and explains concepts of the theory,methods,and regime of thinning in permanent sample plots of pine stands in Gatchinsky forest of the Leningrad region.The research results allow for the clarification of growth patterns and age dynamics of pine stands subject to heavy,low thinning,as well as the results of applying the crown(high)thinning technique and a mixed treatment.A combined thinning and fertilization could improve wood quality and yield compared to conventional methods.Of particular scientific importance is the analysis of change in tree diameter classes during growth and after thinning.The research results allow for optimizing the treatment regime in pine plantations and reducing labor intensity by increasing the intensity of thinning and reducing the number of techniques.展开更多
Prescribed burning and tree thinning are commonly used restoration practices for US forests management to increase forest productivity and enhance plant and animal diversity. The impact of these practices in Alabama’...Prescribed burning and tree thinning are commonly used restoration practices for US forests management to increase forest productivity and enhance plant and animal diversity. The impact of these practices in Alabama’s Bankhead National Forest (BNF) to soil microbial components and overall forest soil health are unknown. We hypothesized that microbial assemblages and enzyme activities are continuously changing in forest ecosystems especially due to management selections. Therefore, the objective of this study was to assess changes in microbial community compositions (fungal vs bacterial populations) via fatty acid methyl ester (FAME) profiling and several enzyme activities (β-glucosaminidase, acid phosphatase, arylsulfatase, β-glucosidase, xylanase, laccase, and manganese peroxidase) critical to soil organic matter (SOM) dynamics and biogeochemical cycling. In this forest, heavily-thinned plots without burning or less frequent burning treatments seemed to provide more favorable conditions (higher pH and lower C:N ratios) for C and N mineralization. This may explain a slight increase (by 12%) detected in fungi:bacteria (F:B) ratio in the heavily-thinned plots relative to the control. Thinned (lightly and heavily) plots showed greater ligninolytic (laccase and MnP) activities and lower β-glucosidase and β-glucosaminidase activities compared to the no-thinned plots probably due to increase depositions of woody recalcitrant C materials. We observed significant but negative correlations between the ligninolytic laccase and manganese peroxidase (Lac and MnP) enzymes respectively, with MBC (?0.45* and ?0.68** respectively) and MBN (?0.43* and ?0.65** respectively). Prescribed burning treatment reduced microbial biomass C and N of the 9-yr burned plot/lightly thinned plotsprobably due to depletion of labile C sources with the high temperatures, leaving mostly recalcitrant C sources as available soil substrates. Gram-positive bacteria (i15:0, a15:0, i17:0, and a17:0), actinomycetes (10-Me17:0, 10-Me18:0), AMF (16:1ω5c), and saprophytic fungi (18:1ω9c), largely contributed to the microbial compositions. This study bridges knowledge gaps in our understanding of microbial community compositions and enzyme-mediated processes in repeatedly burned and thinned forest ecosystems.展开更多
Many aquatic habitats in coastal Oregon have been impacted by historic land use practices that led to losses of in-stream wood and associated degraded fish habitats. Many of these streams are now bordered by stands of...Many aquatic habitats in coastal Oregon have been impacted by historic land use practices that led to losses of in-stream wood and associated degraded fish habitats. Many of these streams are now bordered by stands of dense second growth forests(30–80 years) that are incorporated into riparian buffer zones with low wood recruitment and storage. Thinning in riparian zones is one management option to increase the rate of large tree growth and eventually larger in-stream wood, however, it raises concern about impacts on current wood recruitment, among other issues. Using a forest growth simulation model coupled to a model of in-stream wood recruitment, we explore riparian management alternatives in a Douglas-fir plantation in coastal Oregon. Alternatives included:(1) no treatment,(2) single and double entry thinning, without and with a 10-m buffer, and(3) thinning combined with mechanical introduction of some portion of the thinned trees into the stream(tree tipping). Compared to no treatment, single and double entry thinning on one side of a channel, without a 10-m buffer, reduce cumulative instream wood volume by 33 and 42 %, respectively, after100 years(includes decay). Maintaining a 10-m buffer reduces the in-stream wood loss to 7 %(single entry thin)and 11 %(double entry). To completely offset the losses of in-stream wood in a single entry thin(on one or both sides of the stream), in the absence or presence of a 10-m buffer,requires a 12–14 % rate of tree tipping. Relative to the notreatment alternative, cumulative in-stream wood storage can be increased up to 24 % in a double-entry thin with no buffer by tipping 15–20 % of the thinned trees(increased to 48 % if thinning and tipping simultaneously on both sides of the stream). The predicted increases in in-stream wood that can occur during a thin with tree tipping may be effective for restoring fish habitat, particularly in aquatic systems that have poor habitat conditions and low levels of in-stream wood due to historic land use activities.展开更多
We investigated non-structural carbohydrates(NSC) levels and components(starch,glucose,fructose and sucrose) in the leaves of three typical co-occurring forestfloor plants,moss Eurhynchium savatieri(ES),fern Par...We investigated non-structural carbohydrates(NSC) levels and components(starch,glucose,fructose and sucrose) in the leaves of three typical co-occurring forestfloor plants,moss Eurhynchium savatieri(ES),fern Parathelypteris nipponica(PN) and forb Aruncus sylvester(AS) in a 30-year-old Chinese pine(Pinus tabulaeformis)plantation forest on the eastern Tibetan Plateau.We also explored their responses to three gap creation treatments(control and two gap creations of 80 and 110 m2) based on NSC levels.PN had the highest leaf NSC level of the three plants,with AS second and ES lowest.Starch was the predominant component of NSC and the contents of glucose were higher than those of fructose or sucrose for all three species.The NSC level of ES in intermediate gaps was significantly higher than at control sites.PN also had higher NSC levels in both small and intermediate gaps than in control sites.But the differences between treatments were not obvious for AS.Our results suggest that ES and PN benefit from gap formation while the two species have different NSC response sensitivities to gap size,but the leaf NSC level of AS is less sensitive to the disturbance.展开更多
基金Sciences and Technology Office of Heilongjiang Province (G99B5-10).
文摘According to the cultivating practice ofLarix olgensis pulp plantation, IRR (Internal revenue rate) and NPV (Net present value) were taken as two economic indices to study the effect of cultivation measurements on economic benefit ofLarix olgensis pulp forest. The results showed that the economic benefit of this type of forest is closely related to rotation and site class. Higher economic benefit could be obtained when the rotation is shorter and site class is higher. The planting density also had an obvious influence on economic benefit. On the base of assuring survival rate and conserving rate, the less the fee used in soil preparation and young growth tending is, the higher the economic benefit is. The influence of determined six cultivation measures on economic benefit in sequence was the rotation—site class—density—management fee level—young growth tending intensity—soil preparation methods.
文摘Cultivation of cash crops, such as cardamom (Elettaria cardamomum) in the forest understorey is a common practice in many tropical forests. Over time, cultivation may change forest structure and species composition, leading to gradual degradation of biodiversity and ecosystem services. Effective conservation of these forests requires an enhanced understanding of the demographic processes such as soil seed bank that may greatly influence future forest composition. We examined how the soil seed bank structure and composition responds to cardamom cultivation in a high conservation value Sri Lankan montane rain forest. Soil samples from natural forest with abandoned cardamom plantations (CP) and adjacent natural forest (NF) patches without cardamom were collected in dry and wet seasons. Soil samples were spread out in trays in a shade house and germination was recorded weekly for 19 weeks. The density of seeds in the soil seed bank was much higher in CP than NF. While grasses and forbs contributed the highest number and percentage of seeds in soils of both forest types, their densities in the soil seed bank were 9 and 2 times greater in the CP than the NF, respectively. Seeds of the non-native herbs Ageratina riparia and E. cardamomum were 4 and 20 times greater in the soil of CP, respectively. Seeds of light demanding tree species such as Macaranga indica were restricted to soils of CPs. Overstorey tree community of each forest type was poorly represented in their respective soil seed banks. The high density of seeds of pioneer trees and non-native herbs in the soil of CPs, combined with higher light transmission to the ground floor may exacerbate competition for resources with the seedlings of late successional trees of high conservation value. To overcome this barrier and enhance conservation value of the forest, restoration strategies may need to focus on transplanting seedlings of these species into forest with abandoned cardamom plantations.
基金supported by United States Department of Agriculture(USDA)
文摘This study reports the effects of shifting cultivation at slashing stage on soil physicochemical properties at Bandarban Sadar Upazila in Chittagong Hill Tracts of Bangladesh. At this initial stage of shifting cultivation no general trend was found for moisture content, maximum water holding capacity, field capacity, dry and moist bulk density, parti- cle density for some chemical properties between shifting cultivated land and forest having similar soil texture. Organic matter was significantly 0.05) lower in 1-year and 3-year shifting cultivated lands and higher in 2-year shifting cultivation than in adjacent natural forest. Significant differences were also found for total N, exchangeable Ca, Mg and K and in CEC as well as for available P. Slashed area showed higher soil pH. Deterioration in land quality starts from burning of slashing materials and continues through subsequent stages of shifting cultivation.
基金financially supported by the research on soft science of forestry(2014-R05)consulting project of the Chinese Academy of Engineering(2013-XZ-22)
文摘Currently, transforming the mode of forest management and developing multiple forest management practices are actively encouraged in China. As one forest management type, ginseng cultivation under larch plantations has been developed significantly in the east of Liaoning Province. However, research on the influence of the ecological environment for this mode of production is still deficient. Based on this, our study compares the plant diversity and soil properties in the ginseng cultivation under larch plantations(LG) with larch plantations(LP) and natural secondary forests(SF). First, we randomly selected three plots for each of the three stand types which have similar stand characteristics; then, we carried out a plant diversity survey and soil sampling in each of the nine plots. The results show that no significant difference was found in plant diversity between LG and LP, but theevenness of herbs was significantly lower in LG than LP. No obvious changes in soil physical properties were found in LG, but a significant decrease in most of the soil nutrient content was presented in LG. Furthermore, we found a correlation between plant diversity(H') and soil properties in the three kinds of stand types, especially between herbaceous plant diversity and soil properties. We conclude that ginseng cultivation under larch plantations has no obvious effect on plant diversity, except the herbaceous evenness. Soil fertility can be depleted significantly in LG, but physical structures are not affected. Moreover, maintaining the diversity of herbaceous plants and controlling the density of ginseng cultivation in LG by farmers are important for the ecological environment. Based on this study and its good comprehensive benefits and with the support of policy, we think this forest management type should be promoted moderately in the region.
基金This study was supported by United States Depart-ment of Agriculture (USDA), Grant No.: BG-ARS-123
文摘A study was conducted at two pair sites of Chittagong Hill Tracts in Bangladesh to find out the effects of shifting cultivation on soil fungi and bacterial population. The first pair of sites with shifting culti-vation and village common forest-managed by indigenous community was at Madhya Para in Rangamati district and the second pair of sites with the shifting cultivated land and village common forest at Ampu Para in Bandarban district of Chittagong Hill Tracts. At both the locations with two different land uses, soil textures in surface (0?10 cm) and sub-surface (10?20 cm) soils varied from sandy loam to sandy clay loam. Soil pH and moisture content were lower in shifting cultivated land com-pared to village common forest. The results also showed that both fungal and bacterial population in surface and subsurface soils was significantly (p ≤ 0.05) lower, in most cases, in shifting cultivated land compared to village common forest at both Madhya Para and Ampu Para. At Ranga-mati and Bandarban in shifting cultivated lands, Colletrotrichum and Fusarium fungi were absent and all the bacterial genus viz. Coccus, Bacillus and Streptococcus common in two different locations with dif-ferent land uses. Common identified fungi at both the land uses and locations were Aspergillus, Rhizopus, Trichoderma and Penicillium. Further study can be done on the other soil biota to understand the extent of environmental deterioration due to shifting cultivation.
基金funded by National Key Research and development project(2022YFD2201001)Project for Applied TechnologyResearch and Development in Heilongjiang Province(GA19C006).
文摘To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.
基金the Key Research and Development Plan of Zhejiang Province(No.2019C02008-03)Natural Science Foundation of Zhejiang Province(LY20C160004).
文摘The impact of land consolidation on the soil microbial PLFA diversity is of great importance for understanding the effective arable land usage,improving agricultural ecological conditions and environment.In this study,we collected the soil samples(0–20 cm)in experimental plots with 0(Z0),1(Z1a)and 4(Z4a)years of land consolidation in the forest station of Ningbo City,Zhejiang Province,southeastern China.The results were analyzed using ANOVA for randomized block design.Compared with control(Z0),the soil pH value under Z1a treatment increased by 14.6%,soil organic carbon(SOC)content decreased by 65.4%,so did the PLFA contents and relative abundance of all the microbial PLFA diversity(P<0.05),respectively.Meanwhile,for the Z1a treatment,the ratio of fungi to bacteria(F/B)significantly decreased by 35.9%(P<0.05),while the ratio of Gram-positive bacteria to Gram-negative bacteria(G+/G−)signific antly increased by 56.1%.This was strongly related to the increased soil pH values and the decrease of SOC.The Shannon index(H)and evenness index(E)of soil microbial PLFA diversity were significantly decreased after land consolidation(P<0.05).Compared to the Z1 treatment,the microbial PLFA diversity was improved slightly.Therefore,the land consolidation could significantly affect the composition of soil microbial PLFA diversity,and decrease the soil ecosystem stability.
基金supported by the Applied Technology Research and Development program of Heilongjiang Province(GA19C006)the Innovation Foundation for Doctoral Program of Forestry Engineering of Northeast Forestry University(LYGC202112).
文摘Thinning is a widely used forest management tool but systematic research has not been carried out to verify its eff ects on carbon storage and plant diversity at the ecosystem level.In this study,the eff ect of thinning was assessed across seven thinning intensities(0,10,15,20,25,30 and 35%)in a low-quality secondary forest in NE China over a ten-year period.Thinning aff ected the carbon storage of trees,and shrub,herb,and soil layers(P<0.05).It fi rst increased and then decreased as thinning intensity increased,reaching its maximum at 30%thinning.Carbon storage of the soil accounted for more than 64%of the total carbon stored in the ecosystem.It was highest in the upper 20-cm soil layer.Thinning increased tree species diversity while decreasing shrub and herb diversities(P<0.05).Redundancy analysis and a correlation heat map showed that carbon storage of tree and shrub layers was positively correlated with tree diversity but negatively with herb diversity,indicating that the increase in tree diversity increased the carbon storage of natural forest ecosystems.Although thinning decreased shrub and herb diversities,it increased the carbon storage of the overall ecosystem and tree species diversity of secondary forest.Maximum carbon storage and the highest tree diversity were observed at a thinning intensity of 30%.This study provides evidence for the ecological management of natural and secondary forests and improvement of ecosystem carbon sinks and biodiversity.
基金funded by the National Key R&D Program of China(Grant No.2022YFD2200500)the Forestry Public Welfare Scientific Research Project(Grant No.201504303)。
文摘Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.
基金financially supported by the Innovation Foundation for Doctoral Program of Forestry Engineering of Northeast Forestry University,grant number:LYGC202117the China Scholarship Council(CSC),grant number:202306600046+1 种基金the Research and Development Plan of Applied Technology in Heilongjiang Province of China,grant number:GA19C006Research and Demonstration on Functional Improvement Technology of Forest Ecological Security Barrier in Heilongjiang Province,grant number:GA21C030。
文摘Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importance of structure-based.Aims:Our objectives were to define the direction of structure-based forest management.Subsequently,we investigated the relationships between forest structure and the regeneration,growth,and mortality of trees under different thinning treatments.Ultimately,the drivers of forest structural change were explored.Methods:On the basis of 92 sites selected from northeastern China,with different recovery time (from 1 to 15years) and different thinning intensities (0–59.9%) since the last thinning.Principal component analysis (PCA)identified relationships among factors determining forest spatial structure.The structural equation model (SEM)was used to analyze the driving factors behind the changes in forest spatial structure after thinning.Results:Light thinning (0–20%trees removed) promoted forest regeneration,and heavy thinning (over 35% of trees removed) facilitated forest growth.However,only moderate thinning (20%–35%trees removed) created a reasonable spatial structure.While dead trees were clustered,and they were hardly affected by thinning intensity.Additionally,thinning intensity,recovery time,and altitude indirectly improve the spatial structure of the forest by influencing diameter at breast height (DBH) and canopy area.Conclusion:Creating larger DBH and canopy area through thinning will promote the formation of complex forest structures,which cultivates healthy and stable forests.
基金Supported by Central Financial Forestry Science and Technology Extension Project of China([2016]XT001)Science and Technology Development Project of Hunan Province(S2014F209021)~~
文摘To overcome the issues of high cost and continuous cropping obstacles in facility cultivation of Panax notoginseng_ F. H. Chen, satisfy the market demand, save the production cost, improve the utilization rate of forest land, increase the in-come of forest farmers and protect the ecological environment, the cultivation tech-niques of high-quality P. notoginseng seedlings from Wenshan, Yunnan under four kinds of forests (walnut forest, China fir forest, grape forest and kiwi forest) were in-vestigated in this study. The results showed that the height growth, crown diameter, survival rate and 3-year-old tuber weight of P. notoginseng_under walnut forest were higher than those under the other three kinds of forests; the height growth, crown diameter, survival rate and 3-year-old tuber weight of P. notoginseng under China fir forest were higher than those under grape forest and kiwi forest; and the crown di-ameter and survival rate under grape forest were higher, and the height growth and tuber weight under grape forest were lower than those under kiwi forest. Walnut is a broad-leaved deciduous tree species, so large-scale cultivation of P. notoginseng_should be conducted under broadleaf deciduous forest with canopy density around 0.8, taking advantage of the cool environment and rich humus layer under forest. This cultivation technology could save labor, shade, fertilizer and other costs, and accord with the ecological habit and the growth rules of P. notoginseng, thus im-proving yield and achieving high economic benefit.
基金supported by Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05070303)
文摘We investigated the effect of forest thinning on soil nitrogen mineralization, nitrification and transformation in a Cryptomeria japoni-ca plantation at high elevation to provide basic data for forest manage-ment. We chose four study plots for control, light, medium and heavy thinning treatment, and three sub-plots for buried bag studies at similar elevations in each treatment plot to measure the net N mineralization and nitrification rates in situ. The contents of soil inorganic N (ammonium and nitrate) were similar between treatments, but all varied with season, reaching maxima in September 2003 and 2004. The seasonal maximum net Nmin rates after four treatments were 0.182, 0.246, 0.303 and 0.560 mg?kg-1?d-1 in 2003, and 0.242,0.258,0.411 and 0.671 mg?kg-1?d-1in 2004, respectively. These estimates are approximate with the lower annual rates of N mineralization for this region. Forest thinning can enhance net N mineralization and microbial biomass carbon. The percentage of annual rates of Nmin for different levels of forest thinning compared with the control plot were 13.4%, 59.8%and 154.2%in 2003, and 0.1%, 58.8%and 157.7%in 2004 for light, medium, and heavy thinning, respectively. These differences were related to soil moisture, temperature, precipita-tion, and soil and vegetation types. Well-planned multi-site comparisons, both located within Taiwan and the East-Asia region, could greatly im-prove our knowledge of regional patterns in nitrogen cycling.
基金financially supported by a grant from the National Key Research and Development Program of China(2017YFC0504102)the Science and Technology Program of Jilin Provincial Education Department(JJKH20180349KJ).
文摘Background:Herbs are an important part of the forest ecosystem,and their diversity and biomass can reflect the restoration of vegetation after forest thinning disturbances.Based on the near-mature secondary coniferous and broad-leaved mixed forest in Jilin Province Forestry Experimental Zone,this study analyzed seasonal changes of species diversity and biomass of the understory herb layer after different intensities of thinning.Results:The results showed that although the composition of herbaceous species and the ranking of importance values were affected by thinning intensity,they were mainly determined by seasonal changes.Across the entire growing season,the species with the highest importance values in thinning treatments included Carex pilosa,Aegopodium alpestre,Meehania urticifolia,and Filipendula palmata,which dominated the herb layer of the coniferous and broad-leaved mixed forest.The number of species,Margalef index,Shannon-Wiener index and Simpson index all had their highest values in May,and gradually decreased with months.Pielou index was roughly inverted“N”throughout the growing season.Thinning did not increase the species diversity.Thinning can promote the total biomass,above-and below-ground biomass.The number of plants per unit area and coverage were related to the total biomass,above-and below-ground biomass.The average height had a significantly positive correlation with herb biomass in May but not in July.However,it exerted a significantly negative correlation with herb biomass in September.The biomass in the same month increased with increasing thinning intensity.Total herb biomass,above-and below-ground biomass showed positive correlations with Shannon-Winner index,Simpson index and Pielou evenness index in May.Conclusions:Thinning mainly changed the light environment in the forest,which would improve the plant diversity and biomass of herb layer in a short time.And different thinning intensity had different effects on the diversity of understory herb layer.The findings provide theoretical basis and reference for reasonable thinning and tending in coniferous and broad-leaved mixed forests.
文摘A brief overview of the system of forest inventory in China and its problems existed is given. Forest planning requires information about the current state of the forest resource. However, generally speaking, the information collected in a periodic inventory may become obsolete already after the first thinning following. Therefore,in order to solve the problem, theory skeleton of thinning inventory technique and its approach in forest inventory,is presented in this paper, with an emphasis on the research and study developing currently thinning inventory.
基金supported by Natural Science Basic Research Program of Shaanxi(2021JQ-155)National Natural Science Foundation of China(32101511)Chinese Universities Scientific Fund(2452020137 and 2452021073)。
文摘Background:Chinese pine(Pinus tabuliformis Carr.)is one of the major afforestation species in northern China and plays a key role in restoring forest ecosystems and preserving soil and water.However,most Chinese pine plantations are experiencing ecological problems such as the low diversity of understory plants and difficulty in natural regeneration.Thinning has been widely used to maintain and improve a variety of forest ecosystem services from plantations.To date,however,few studies have been conducted to systematically determine the effects of thinning on understory plant diversity and the regeneration of Chinese pine in plantations.Methods:We conducted a literature search,and selected 22 publications covering a total of 83 treatments related to thinning effects on the species richness of understory plants and 15 publications covering a total of 43 treatments related to thinning effects on the regeneration of Chinese pine,in tree plantations of northern China.The data from the literature were synthesized and evaluated with meta-analysis approach to determine the treatment effects.Results:Compared with the control stands,thinning increased the species richness of shrubs and herbs by an average of 25.3%and 26.5%,respectively.While the varying thinning intensities all had significantly positive effects on the species richness of understory plants,only moderate thinning(30%–50%)had a positive effect on the density of regenerating seedlings and saplings of Chinese pine(60.2%).The species richness of understory plants was greatest after 14 years of thinning with an increase of 36.3%,whereas the density of regenerating Chinese pine seedlings and saplings reached a maximum after≥11 years of thinning with an increase of 76.5%,compared to that of the unthinned stands.Thinning in the half-mature plantations had the greatest effects on the understory shrub richness(44.1%)and the density of regenerating Chinese pine seedlings and saplings(86.5%).Both single and multiple thinning were found to significantly promote the species richness of understory plants and the density of regenerating Chinese pine seedlings and saplings,and the positive effects of thinning were greater in areas with a humidity index(HI)<30 than in areas with an HI≥30.In general,age group,planting density and recovery time were prominent factors affecting the species richness of understory plants,whereas the slope,HI and recovery time were the dominant controls of the density of regenerating Chinese pine seedlings and saplings,indicating differential effects of thinning on the species richness of understory plants and the regeneration capacity of Chinese pine in plantations.Conclusion:Thinning appears to be a feasible management measure to improve the understory plant diversity and regeneration capacity of Chinese pine in plantations.We postulate that moderate thinning in half-mature forest stands with an HI<30 can help effectively promote the species diversity of understory plants and the natural regeneration of Chinese pine,thereby maintaining a more resilient stand structure and the development of Chinese pine plantations.
基金funded by the National Key R&D Program of China(2017YFC0504103)Project for Applied Technology Research and Development in Heilongjiang Province(GA19C006).
文摘To explore how to respond to seasonal freeze–thaw cycles on forest ecosystems in the context of climate change through thinning,we assessed the potential impact of thinning intensity on carbon cycle dynamics.By varying the number of temperature cycles,the eff ects of various thinning intensities in four seasons.The rate of mass,litter organic carbon,and soil organic carbon(SOC)loss in response to temperature variations was examined in two degrees of decomposition.The unfrozen season had the highest decomposition rate of litter,followed by the frozen season.Semi-decomposed litter had a higher decomposition rate than undecomposed litter.The decomposition rate of litter was the highest when the thinning intensity was 10%,while the litter and SOC were low.Forest litter had a good carbon sequestration impact in the unfrozen and freeze–thaw seasons,while the converse was confi rmed in the frozen and thaw seasons.The best carbon sequestration impact was identifi ed in litter,and soil layers under a 20–25%thinning intensity,and the infl uence of undecomposed litter on SOC was more noticeable than that of semi-decomposed litter.Both litter and soil can store carbon:however,carbon is transported from undecomposed litter to semi-decomposed litter and to the soil over time.In summary,the best thinning intensity being 20–25%.
文摘Thinning is a necessary and complex forestry activity.The complexity increases due to theoretical disagreements,contradictory recommendations,and errors of modern practice,which require confirmation through longtime experiments.This article presents a summary of experimental results from plantations established 20–30 years ago and explains concepts of the theory,methods,and regime of thinning in permanent sample plots of pine stands in Gatchinsky forest of the Leningrad region.The research results allow for the clarification of growth patterns and age dynamics of pine stands subject to heavy,low thinning,as well as the results of applying the crown(high)thinning technique and a mixed treatment.A combined thinning and fertilization could improve wood quality and yield compared to conventional methods.Of particular scientific importance is the analysis of change in tree diameter classes during growth and after thinning.The research results allow for optimizing the treatment regime in pine plantations and reducing labor intensity by increasing the intensity of thinning and reducing the number of techniques.
文摘Prescribed burning and tree thinning are commonly used restoration practices for US forests management to increase forest productivity and enhance plant and animal diversity. The impact of these practices in Alabama’s Bankhead National Forest (BNF) to soil microbial components and overall forest soil health are unknown. We hypothesized that microbial assemblages and enzyme activities are continuously changing in forest ecosystems especially due to management selections. Therefore, the objective of this study was to assess changes in microbial community compositions (fungal vs bacterial populations) via fatty acid methyl ester (FAME) profiling and several enzyme activities (β-glucosaminidase, acid phosphatase, arylsulfatase, β-glucosidase, xylanase, laccase, and manganese peroxidase) critical to soil organic matter (SOM) dynamics and biogeochemical cycling. In this forest, heavily-thinned plots without burning or less frequent burning treatments seemed to provide more favorable conditions (higher pH and lower C:N ratios) for C and N mineralization. This may explain a slight increase (by 12%) detected in fungi:bacteria (F:B) ratio in the heavily-thinned plots relative to the control. Thinned (lightly and heavily) plots showed greater ligninolytic (laccase and MnP) activities and lower β-glucosidase and β-glucosaminidase activities compared to the no-thinned plots probably due to increase depositions of woody recalcitrant C materials. We observed significant but negative correlations between the ligninolytic laccase and manganese peroxidase (Lac and MnP) enzymes respectively, with MBC (?0.45* and ?0.68** respectively) and MBN (?0.43* and ?0.65** respectively). Prescribed burning treatment reduced microbial biomass C and N of the 9-yr burned plot/lightly thinned plotsprobably due to depletion of labile C sources with the high temperatures, leaving mostly recalcitrant C sources as available soil substrates. Gram-positive bacteria (i15:0, a15:0, i17:0, and a17:0), actinomycetes (10-Me17:0, 10-Me18:0), AMF (16:1ω5c), and saprophytic fungi (18:1ω9c), largely contributed to the microbial compositions. This study bridges knowledge gaps in our understanding of microbial community compositions and enzyme-mediated processes in repeatedly burned and thinned forest ecosystems.
基金supported by the U.S.Forest Service,Pacific Northwest Research Station and Earth Systems Institute,Seattle Washington
文摘Many aquatic habitats in coastal Oregon have been impacted by historic land use practices that led to losses of in-stream wood and associated degraded fish habitats. Many of these streams are now bordered by stands of dense second growth forests(30–80 years) that are incorporated into riparian buffer zones with low wood recruitment and storage. Thinning in riparian zones is one management option to increase the rate of large tree growth and eventually larger in-stream wood, however, it raises concern about impacts on current wood recruitment, among other issues. Using a forest growth simulation model coupled to a model of in-stream wood recruitment, we explore riparian management alternatives in a Douglas-fir plantation in coastal Oregon. Alternatives included:(1) no treatment,(2) single and double entry thinning, without and with a 10-m buffer, and(3) thinning combined with mechanical introduction of some portion of the thinned trees into the stream(tree tipping). Compared to no treatment, single and double entry thinning on one side of a channel, without a 10-m buffer, reduce cumulative instream wood volume by 33 and 42 %, respectively, after100 years(includes decay). Maintaining a 10-m buffer reduces the in-stream wood loss to 7 %(single entry thin)and 11 %(double entry). To completely offset the losses of in-stream wood in a single entry thin(on one or both sides of the stream), in the absence or presence of a 10-m buffer,requires a 12–14 % rate of tree tipping. Relative to the notreatment alternative, cumulative in-stream wood storage can be increased up to 24 % in a double-entry thin with no buffer by tipping 15–20 % of the thinned trees(increased to 48 % if thinning and tipping simultaneously on both sides of the stream). The predicted increases in in-stream wood that can occur during a thin with tree tipping may be effective for restoring fish habitat, particularly in aquatic systems that have poor habitat conditions and low levels of in-stream wood due to historic land use activities.
基金supported by the Strategic Priority Research Program of the CAS(No.XDA05070306)the National Science&Technology Pillar Program in 12th 5-year Plan of China(No.2011BAC09B0402)
文摘We investigated non-structural carbohydrates(NSC) levels and components(starch,glucose,fructose and sucrose) in the leaves of three typical co-occurring forestfloor plants,moss Eurhynchium savatieri(ES),fern Parathelypteris nipponica(PN) and forb Aruncus sylvester(AS) in a 30-year-old Chinese pine(Pinus tabulaeformis)plantation forest on the eastern Tibetan Plateau.We also explored their responses to three gap creation treatments(control and two gap creations of 80 and 110 m2) based on NSC levels.PN had the highest leaf NSC level of the three plants,with AS second and ES lowest.Starch was the predominant component of NSC and the contents of glucose were higher than those of fructose or sucrose for all three species.The NSC level of ES in intermediate gaps was significantly higher than at control sites.PN also had higher NSC levels in both small and intermediate gaps than in control sites.But the differences between treatments were not obvious for AS.Our results suggest that ES and PN benefit from gap formation while the two species have different NSC response sensitivities to gap size,but the leaf NSC level of AS is less sensitive to the disturbance.