Amidst growing environmental protection intensity by the Chinese government, this paper investigates the effects of environmental regulation on China's industrial pollution treatment productivity and environmental TF...Amidst growing environmental protection intensity by the Chinese government, this paper investigates the effects of environmental regulation on China's industrial pollution treatment productivity and environmental TFP. By estimating China's pollution treatment productivity between 2001 and 2008 and analyzing environmental regulation intensity and the effects of the relevant factors and pollution treatment productivity using panel data, this paper discovers that (1) pollution treatment productivity contributed a significant share of about 40% to industrial environmental TFP during the investigation period; (2) environmental regulation may not necessarily cause adverse impacts on pollution treatment efficiency and productivity but demonstrates a U-shaped relationship: when the share of pollution treatment cost in industrial value-added is above the range of 3.8%-5.1%, environmental regulation is likely to promote pollution treatment productivity and thus environmental TFP Judging by the estimation result, enhancing environmental protection and expediting the development of ecological civilization are conducive to China "s economic transition towards an intensive, efficient, circular, and sustainable development pattern. China's current industrial development has the capacity to tolerate a rather demanding level of pollution treatment and management and China needs to further rely on energy conservation and the environmental production industries to promote the progress of pollution treatment technologies.展开更多
The wide occurrence of new-emerging pollutants and their potential environmental and ecological risks have recently caused great public concerns. The paper firstly put forward the severe problem. Then the possible mai...The wide occurrence of new-emerging pollutants and their potential environmental and ecological risks have recently caused great public concerns. The paper firstly put forward the severe problem. Then the possible main reasons were analyzed which might attribute to both the inefficient removal of wastewater treatment plants with conventional technology and ignorance of the monitor and control of new-emerging pollutants in the effluents. Also, the complexity and extreme high costs may also make the organizations sidestep the problem. Finally, possible strategies to deal with the problems were proposed. The upgrade of wastewater treatment plants was important and urgent.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
Nowadays,rural domestic sewage has had serious effects on the natural environment in rural areas such as the body of water and soil.In order to ensure rural water security and good health condition of farmers,it is ur...Nowadays,rural domestic sewage has had serious effects on the natural environment in rural areas such as the body of water and soil.In order to ensure rural water security and good health condition of farmers,it is urgent to treat the rural sewage.The theoretical principle,characteristics,deficiencies and application status of some decentralized disposal technologies for domestic sewage are introduced,which include high rate algal pond technology,subsurface infiltration treatment system,earthworm eco-filter,constructed wetland treatment technology and membrane bioreactor technology,so as to provide references for the rural sewage treatment.展开更多
An innovative design for the treatment and reuse of grey water is presented in the form of a grey water dam which is an outgrowth of the vertical grey water tower. A hydraulic equation has been formulated and is prese...An innovative design for the treatment and reuse of grey water is presented in the form of a grey water dam which is an outgrowth of the vertical grey water tower. A hydraulic equation has been formulated and is presented in this paper which is used to determine the seepage path within the grey water dam, and determine the dimensions of the dam components. The hydraulic equation model also helps in avoiding soil piping problems by keeping the phreatic line within the grey water dam. Vegetables are planted around the surface of the dam as a reuse option while helping recycling of water in the form of evapotranspiration. A successful pilot trial of this dam was run in Mnyamatsini area in Swaziland which can accept grey water from multiple households.展开更多
In this paper,the water quality of the Xixi Wetland was evaluated and the characteristics of water pollution were described according to the survey data.Based on the status of water quality and its functional requirem...In this paper,the water quality of the Xixi Wetland was evaluated and the characteristics of water pollution were described according to the survey data.Based on the status of water quality and its functional requirements as an urban wetland,biological-ecological countermeasures were suggested.The experimental use of ecological technologies,such as artificial wetlands,ecological aquiculture and artificial floating island,were done in several fish ponds in the Xixi Wetland.Water monitoring results show that the quality of the treated water has improved significantly and the measures to purify the eutrophic water in the wetland have been effective.展开更多
This review reports the research progress in the abatement of major pollutants in air and water by environmental catalysis. For air pollution control, the selective catalytic reduction of NOχ (SCR) by ammonia and h...This review reports the research progress in the abatement of major pollutants in air and water by environmental catalysis. For air pollution control, the selective catalytic reduction of NOχ (SCR) by ammonia and hydrocarbons on metal oxide and zeolite catalysts are reviewed and discussed, as is the removal of Hg from flue gas by catalysis. The oxidation of Volatile organic compounds (VOCs) by photo- and thermal- catalysis for indoor air quality improvement is reviewed. For waste- water treatment, the catalytic elimination of inorganic and organic pollutants in wastewater is presented. In addition, the mechanism for the procedure of abatement of air and water pollutants by catalysis is discussed in this review. Finally, a research orientation on environment catalysis for the treatment of air pollutants and wastewater is proposed.展开更多
文摘Amidst growing environmental protection intensity by the Chinese government, this paper investigates the effects of environmental regulation on China's industrial pollution treatment productivity and environmental TFP. By estimating China's pollution treatment productivity between 2001 and 2008 and analyzing environmental regulation intensity and the effects of the relevant factors and pollution treatment productivity using panel data, this paper discovers that (1) pollution treatment productivity contributed a significant share of about 40% to industrial environmental TFP during the investigation period; (2) environmental regulation may not necessarily cause adverse impacts on pollution treatment efficiency and productivity but demonstrates a U-shaped relationship: when the share of pollution treatment cost in industrial value-added is above the range of 3.8%-5.1%, environmental regulation is likely to promote pollution treatment productivity and thus environmental TFP Judging by the estimation result, enhancing environmental protection and expediting the development of ecological civilization are conducive to China "s economic transition towards an intensive, efficient, circular, and sustainable development pattern. China's current industrial development has the capacity to tolerate a rather demanding level of pollution treatment and management and China needs to further rely on energy conservation and the environmental production industries to promote the progress of pollution treatment technologies.
文摘The wide occurrence of new-emerging pollutants and their potential environmental and ecological risks have recently caused great public concerns. The paper firstly put forward the severe problem. Then the possible main reasons were analyzed which might attribute to both the inefficient removal of wastewater treatment plants with conventional technology and ignorance of the monitor and control of new-emerging pollutants in the effluents. Also, the complexity and extreme high costs may also make the organizations sidestep the problem. Finally, possible strategies to deal with the problems were proposed. The upgrade of wastewater treatment plants was important and urgent.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
基金Supported by Major Science and Technology Project of State Water Pollution Control and Governance(2008ZX07208-005)
文摘Nowadays,rural domestic sewage has had serious effects on the natural environment in rural areas such as the body of water and soil.In order to ensure rural water security and good health condition of farmers,it is urgent to treat the rural sewage.The theoretical principle,characteristics,deficiencies and application status of some decentralized disposal technologies for domestic sewage are introduced,which include high rate algal pond technology,subsurface infiltration treatment system,earthworm eco-filter,constructed wetland treatment technology and membrane bioreactor technology,so as to provide references for the rural sewage treatment.
文摘An innovative design for the treatment and reuse of grey water is presented in the form of a grey water dam which is an outgrowth of the vertical grey water tower. A hydraulic equation has been formulated and is presented in this paper which is used to determine the seepage path within the grey water dam, and determine the dimensions of the dam components. The hydraulic equation model also helps in avoiding soil piping problems by keeping the phreatic line within the grey water dam. Vegetables are planted around the surface of the dam as a reuse option while helping recycling of water in the form of evapotranspiration. A successful pilot trial of this dam was run in Mnyamatsini area in Swaziland which can accept grey water from multiple households.
文摘In this paper,the water quality of the Xixi Wetland was evaluated and the characteristics of water pollution were described according to the survey data.Based on the status of water quality and its functional requirements as an urban wetland,biological-ecological countermeasures were suggested.The experimental use of ecological technologies,such as artificial wetlands,ecological aquiculture and artificial floating island,were done in several fish ponds in the Xixi Wetland.Water monitoring results show that the quality of the treated water has improved significantly and the measures to purify the eutrophic water in the wetland have been effective.
文摘This review reports the research progress in the abatement of major pollutants in air and water by environmental catalysis. For air pollution control, the selective catalytic reduction of NOχ (SCR) by ammonia and hydrocarbons on metal oxide and zeolite catalysts are reviewed and discussed, as is the removal of Hg from flue gas by catalysis. The oxidation of Volatile organic compounds (VOCs) by photo- and thermal- catalysis for indoor air quality improvement is reviewed. For waste- water treatment, the catalytic elimination of inorganic and organic pollutants in wastewater is presented. In addition, the mechanism for the procedure of abatement of air and water pollutants by catalysis is discussed in this review. Finally, a research orientation on environment catalysis for the treatment of air pollutants and wastewater is proposed.