Over millions of years of evolution,nature has created organisms with overwhelming performances due to their unique materials and structures,providing us with valuable inspirations for the development of next-generati...Over millions of years of evolution,nature has created organisms with overwhelming performances due to their unique materials and structures,providing us with valuable inspirations for the development of next-generation biomedical devices.As a promising new technology,3D printing enables the fabrication of multiscale,multi-material,and multi-functional threedimensional(3D)biomimetic materials and structures with high precision and great flexibility.The manufacturing challenges of biomedical devices with advanced biomimetic materials and structures for various applications were overcome with the flourishing development of 3D printing technologies.In this paper,the state-of-the-art additive manufacturing of biomimetic materials and structures in the field of biomedical engineering were overviewed.Various kinds of biomedical applications,including implants,lab-on-chip,medicine,microvascular network,and artificial organs and tissues,were respectively discussed.The technical challenges and limitations of biomimetic additive manufacturing in biomedical applications were further investigated,and the potential solutions and intriguing future technological developments of biomimetic 3D printing of biomedical devices were highlighted.展开更多
Objective:To investigate the advancements achieved by biomedical engineering laboratories in China during 2023.Methods:A total of 729 articles were initially selected from the SCI database and categorized by image,sig...Objective:To investigate the advancements achieved by biomedical engineering laboratories in China during 2023.Methods:A total of 729 articles were initially selected from the SCI database and categorized by image,signal,gene,and mechanics,with categories of quartile 1 or higher.Subsequently,52 representative articles were selected for this review.Results:The Chinese research team made significant strides in biomedical engineering in 2023,primarily in the following areas:traditional imaging technology,fluorescence labeling technology,photoacoustic imaging technology,neural interfaces and modulation,medical machinery,and medical materials.Significance:This review serves as an instructional manual for novices and an updated status report for experienced professionals.Additionally,comparing the achievements of Chinese teams with international teams may help shape future research directions in China.展开更多
Biodegradable wires,able to provide load-bearing support for various biomedical applications,are the novel trends in current biomaterial research.A thin 99.92%Mg wire with a diameter of 250μm was prepared via direct ...Biodegradable wires,able to provide load-bearing support for various biomedical applications,are the novel trends in current biomaterial research.A thin 99.92%Mg wire with a diameter of 250μm was prepared via direct extrusion with an extreme reduction ratio of 1:576.The total imposed strain in a single processing step was 6.36.Extrusion was carried out at elevated temperatures in the range from 230 to 310℃and with various ram speeds ranging from^0.2 to^0.5 mm/s.The resulting wires show very good mechanical properties which vary with extrusion parameters.Maximum true tensile stress at room temperature reaches^228 MPa and ductility reaches^13%.The proposed single-step direct extrusion can be an effective method for the production of Mg wires in sufficient quantities for bioapplications.The fractographic analysis revealed that failure of the wires may be closely connected with inclusions(e.g.,Mg O particles).The results are essential for determining the optimal processing conditions of hot extrusion for thin Mg wire.The smaller grain size,as the outcome of the lower extrusion temperature,is identified as the main parameter affecting the tensile properties of the wires.展开更多
Biodegradable metals such as magnesium(Mg)and its alloys have attracted extensive attention in biomedical research due to their excellent mechanical properties and biodegradability.However,traditional casting,extrusio...Biodegradable metals such as magnesium(Mg)and its alloys have attracted extensive attention in biomedical research due to their excellent mechanical properties and biodegradability.However,traditional casting,extrusion,and commercial processing have limitations in manufacturing components with a complex shape/structure,and these processes may produce defects such as cavities and gas pores which can degrade the properties and usefulness of the products.Compared to conventional techniques,additive manufacturing(AM)can be used to precisely control the geometry of workpieces made of different Mg-based materials with multiple geometric scales and produce desirable medical products for orthopedics,dentistry,and other fields.However,a detailed and thorough understanding of the raw materials,manufacturing processes,properties,and applications is required to foster the production of commercial Mg-based biomedical components by AM.This review summarizes recent advances and important issues pertaining to AM of Mg-based biomedical products and discusses future development and application trends.展开更多
The paper investigated the physical properties of muga silk.Surface properties,linear density,moisture regain and mechanical properties of muga silk were tested before and after degumming.The results show that muga si...The paper investigated the physical properties of muga silk.Surface properties,linear density,moisture regain and mechanical properties of muga silk were tested before and after degumming.The results show that muga silk has tiny fineness and high strength.The average fineness and the strength of the monofilament are 1.52 dtex and 5.62 cN/dtex,respectively.This makes up for the shortcomings of other kinds of silk,and has great potential in the application of biomaterials.展开更多
The corrosion behaviors of SUS316L stainless steel, Co Cr alloy and Ti 6Al 4V alloy in Ringer’s, PBS(-) and Hank’s solutions have been investigated. The results indicate that the corrosion of Ringer’s solution is t...The corrosion behaviors of SUS316L stainless steel, Co Cr alloy and Ti 6Al 4V alloy in Ringer’s, PBS(-) and Hank’s solutions have been investigated. The results indicate that the corrosion of Ringer’s solution is the strongest, then followed by PBS(-) and Hank’s solution. The presence of HPO 2- 4, H 2PO - 4, SO 2- 4 and glucose in the PBS(-)and Hank’s solution probably reduces the corrosion inhibitor and corrosion current. The decrease of the solution’s pH significantly increases the corrosion rate and susceptibility to localized corrosion of SUS316L SS and Co Cr alloy. However, Ti 6Al 4V alloy exhibits an exceptional stability and has only a slight increase of corrosion rate with decreasing pH.展开更多
The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on mic...The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on microstructure andmechanical properties were investigated using the OM,XRD,TEM,Vicker hardness tester and universal material testing machine.Results indicated that the alloy showed multiple plastic deformation mechanisms,including stress-inducedα'martensite(SIMα')transformation,dislocation slipping and deformation twins.With the increase of cold deformation reduction,the tensile strength andhardness increased owing to the increase of dislocation density and grain refinement,and the elastic modulus slightly increasedowing to the increase of SIMα'phase.The90%cold deformed alloy exhibited a great potential to become a new candidate forbiomedical applications since it possessed low elastic modulus(56.2GPa),high tensile strength(1260MPa)and highstrength-to-modulus ratio(22.4×10-3),which are superior than those of Ti-6Al-4V alloy.展开更多
Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medica...Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medical applications was successfully fabricated in the porosity range of 40%-50% (volume fraction) by controlling the SLS parameters and sintering behaviour. The porosity of the sintered compacts was investigated as a function of the SLS parameters and the furnace cycle. Compressive stress and elastic modulus of the 316L stainless steel material were determined. The compressive strength was found to be ranging from 21 to 32 MPa and corresponding elastic modulus ranging from 26 to 43 GPa. The present parts are promising for biomedical applications since the optimal porosity of implant materials for ingrowths of new-bone tissues is in the range of 20%-59% (volume fraction) and mechanical properties are matching with human bone.展开更多
Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties...Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr–Cu–Fe–Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson's ratio and low Young's and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316 L steel in phosphate buffer solution(PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young's modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications.展开更多
The biomimetic coating process in comparison with other processes is reviewed. This processing shows advantages in the surface bio-modification, such as low cost and flexible processing, wide range of apatite composit...The biomimetic coating process in comparison with other processes is reviewed. This processing shows advantages in the surface bio-modification, such as low cost and flexible processing, wide range of apatite composition and thickness, non-line-of-sight characteristic and possibility to coat polymers and porous implants. The (bio-)(mimetic) apatite coating is made up of larger number of globules with size of 15μm. Each globule is a group of (numerous) flakes with a size range of 100200nm to 30μm in length and 0.11μm in thickness. In-vitro and (in-vivo) studies show that the biomimetic apatite coating can promote an early and strong bonding to bone or promote the bone in-growth into the porous structure, which will be beneficial to the cementless stable fixation of orthopaedic implants. Recently developed co-precipitation of a kind of protein molecules into the HA coating shows much (promising.)展开更多
With the advent of tissue engineering and biomedicine,the creation of extracellular matrix(ECM)biomaterials for in vitro applications has become a prominent and promising strategy.These ECM materials provide physical,...With the advent of tissue engineering and biomedicine,the creation of extracellular matrix(ECM)biomaterials for in vitro applications has become a prominent and promising strategy.These ECM materials provide physical,biochemical,and mechanical properties that guide cellular behaviors,such as proliferation,differentiation,migration,and apoptosis.Because micro-and nano-patterned materials have a unique surface topology and low energy replication process that directly affect cellular biological behaviors at the interface,the fabrication of micro-nano pattern biomaterials and the regulation of surface physical and chemical properties are of great significance in the fields of cell regulation,tissue engineering,and regenerative medicine.Herein,we provide a comprehensive review of the progress in the fabrication and application of patterned materials based on the coupling of mechanical action at the micro-and nano-meter scale,including photolithography,micro-contact printing,electron beam lithography,electrospinning,and 3D printing technology.Furthermore,a summary of the fabrication process,underlying principles,as well as the advantages and disadvantages of various technologies are reviewed.We also discuss the influence of material properties on the fabrication of micro-and nano-patterns.展开更多
Wound healing is a long-term,multi-stage biological process that mainly includes haemostatic,inflammatory,proliferative and tissue remodelling phases.Controlling infection and inflammation and promoting tissue regener...Wound healing is a long-term,multi-stage biological process that mainly includes haemostatic,inflammatory,proliferative and tissue remodelling phases.Controlling infection and inflammation and promoting tissue regeneration can contribute well to wound healing.Smart biomaterials offer significant advantages in wound healing because of their ability to control wound healing in time and space.Understanding how biomaterials are designed for different stages of wound healing will facilitate future personalized material tailoring for different wounds,making them beneficial for wound therapy.This review summarizes the design approaches of biomaterials in the field of anti-inflammatory,antimicrobial and tissue regeneration,highlights the advanced precise control achieved by biomaterials in different stages of wound healing and outlines the clinical and practical applications of biomaterials in wound healing.展开更多
背景:骨蜡是可用于骨止血的填塞剂,国内外虽一直在修正骨蜡配方,但无法改变其难以被吸收的核心瓶颈,因此开发具有止血、成骨和抗菌等功能化的骨科止血材料替代骨蜡具有迫切的临床需求。目的:回顾包括骨蜡和其替代材料在内的骨科止血材...背景:骨蜡是可用于骨止血的填塞剂,国内外虽一直在修正骨蜡配方,但无法改变其难以被吸收的核心瓶颈,因此开发具有止血、成骨和抗菌等功能化的骨科止血材料替代骨蜡具有迫切的临床需求。目的:回顾包括骨蜡和其替代材料在内的骨科止血材料的发展历程。方法:检索Pub Med、Web of Science、万方数据库、中国知网及维普数据库中与骨蜡、止血材料、骨科止血材料研究进展相关的文献,并通过阅读文章中的摘要部分初筛,选择了136篇文献纳入综述。结果与结论:为替代传统骨蜡,研究人员从止血、成骨等实际场景的需求出发,开发出各式骨科止血材料,但相关研究多集中于基础的理化和性能测试,缺乏系统的评价体系,同时欠缺足够的大动物实验和临床试验报道。因此,目前骨蜡依旧是公认的骨科止血材料,其根本原因是已有材料的设计无法适时满足术中止血、术后成骨及临床上的新需求。未来还需要对现有止血和成骨材料的结构、组分和功能进行整合和再设计,以满足不断提高的止血与成骨需求。展开更多
基金The authors acknowledge Arizona State University for the start-up funding support.
文摘Over millions of years of evolution,nature has created organisms with overwhelming performances due to their unique materials and structures,providing us with valuable inspirations for the development of next-generation biomedical devices.As a promising new technology,3D printing enables the fabrication of multiscale,multi-material,and multi-functional threedimensional(3D)biomimetic materials and structures with high precision and great flexibility.The manufacturing challenges of biomedical devices with advanced biomimetic materials and structures for various applications were overcome with the flourishing development of 3D printing technologies.In this paper,the state-of-the-art additive manufacturing of biomimetic materials and structures in the field of biomedical engineering were overviewed.Various kinds of biomedical applications,including implants,lab-on-chip,medicine,microvascular network,and artificial organs and tissues,were respectively discussed.The technical challenges and limitations of biomimetic additive manufacturing in biomedical applications were further investigated,and the potential solutions and intriguing future technological developments of biomimetic 3D printing of biomedical devices were highlighted.
基金Natural Science Foundation of Beijing Municipality,Z220015.
文摘Objective:To investigate the advancements achieved by biomedical engineering laboratories in China during 2023.Methods:A total of 729 articles were initially selected from the SCI database and categorized by image,signal,gene,and mechanics,with categories of quartile 1 or higher.Subsequently,52 representative articles were selected for this review.Results:The Chinese research team made significant strides in biomedical engineering in 2023,primarily in the following areas:traditional imaging technology,fluorescence labeling technology,photoacoustic imaging technology,neural interfaces and modulation,medical machinery,and medical materials.Significance:This review serves as an instructional manual for novices and an updated status report for experienced professionals.Additionally,comparing the achievements of Chinese teams with international teams may help shape future research directions in China.
基金Financial support of the Czech Technical University in Prague in the frame of the project SGS18/191/OHK4/3T/14financial support of the European Regional Development Fund (project CZ.02.1.01/0.0/0.0/16-019/0000778)
文摘Biodegradable wires,able to provide load-bearing support for various biomedical applications,are the novel trends in current biomaterial research.A thin 99.92%Mg wire with a diameter of 250μm was prepared via direct extrusion with an extreme reduction ratio of 1:576.The total imposed strain in a single processing step was 6.36.Extrusion was carried out at elevated temperatures in the range from 230 to 310℃and with various ram speeds ranging from^0.2 to^0.5 mm/s.The resulting wires show very good mechanical properties which vary with extrusion parameters.Maximum true tensile stress at room temperature reaches^228 MPa and ductility reaches^13%.The proposed single-step direct extrusion can be an effective method for the production of Mg wires in sufficient quantities for bioapplications.The fractographic analysis revealed that failure of the wires may be closely connected with inclusions(e.g.,Mg O particles).The results are essential for determining the optimal processing conditions of hot extrusion for thin Mg wire.The smaller grain size,as the outcome of the lower extrusion temperature,is identified as the main parameter affecting the tensile properties of the wires.
基金This work was financially supported by the Guangdong Basic and Applied Basic Research Foundation(No.2020B1515120078,2021A1515111140,and 2021B1515120059)National Key Research and Development Project of China(No.2020YFC1107202)+3 种基金Science Research Cultivation Program(PY2022002)Science and Technology Planning Project of Guangzhou(No.202206010030)City University of Hong Kong Donation Research Grants[DONRMG No.9229021 and 9220061]as well as City University of Hong Kong Strategic Research Grant[SRG 7005505].
文摘Biodegradable metals such as magnesium(Mg)and its alloys have attracted extensive attention in biomedical research due to their excellent mechanical properties and biodegradability.However,traditional casting,extrusion,and commercial processing have limitations in manufacturing components with a complex shape/structure,and these processes may produce defects such as cavities and gas pores which can degrade the properties and usefulness of the products.Compared to conventional techniques,additive manufacturing(AM)can be used to precisely control the geometry of workpieces made of different Mg-based materials with multiple geometric scales and produce desirable medical products for orthopedics,dentistry,and other fields.However,a detailed and thorough understanding of the raw materials,manufacturing processes,properties,and applications is required to foster the production of commercial Mg-based biomedical components by AM.This review summarizes recent advances and important issues pertaining to AM of Mg-based biomedical products and discusses future development and application trends.
基金Fundamental Research Funds for the Central Universities,China(No.2232019G-06)
文摘The paper investigated the physical properties of muga silk.Surface properties,linear density,moisture regain and mechanical properties of muga silk were tested before and after degumming.The results show that muga silk has tiny fineness and high strength.The average fineness and the strength of the monofilament are 1.52 dtex and 5.62 cN/dtex,respectively.This makes up for the shortcomings of other kinds of silk,and has great potential in the application of biomaterials.
文摘The corrosion behaviors of SUS316L stainless steel, Co Cr alloy and Ti 6Al 4V alloy in Ringer’s, PBS(-) and Hank’s solutions have been investigated. The results indicate that the corrosion of Ringer’s solution is the strongest, then followed by PBS(-) and Hank’s solution. The presence of HPO 2- 4, H 2PO - 4, SO 2- 4 and glucose in the PBS(-)and Hank’s solution probably reduces the corrosion inhibitor and corrosion current. The decrease of the solution’s pH significantly increases the corrosion rate and susceptibility to localized corrosion of SUS316L SS and Co Cr alloy. However, Ti 6Al 4V alloy exhibits an exceptional stability and has only a slight increase of corrosion rate with decreasing pH.
基金Project(20133069014)supported by the National Aerospace Science Foundation of China
文摘The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on microstructure andmechanical properties were investigated using the OM,XRD,TEM,Vicker hardness tester and universal material testing machine.Results indicated that the alloy showed multiple plastic deformation mechanisms,including stress-inducedα'martensite(SIMα')transformation,dislocation slipping and deformation twins.With the increase of cold deformation reduction,the tensile strength andhardness increased owing to the increase of dislocation density and grain refinement,and the elastic modulus slightly increasedowing to the increase of SIMα'phase.The90%cold deformed alloy exhibited a great potential to become a new candidate forbiomedical applications since it possessed low elastic modulus(56.2GPa),high tensile strength(1260MPa)and highstrength-to-modulus ratio(22.4×10-3),which are superior than those of Ti-6Al-4V alloy.
文摘Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medical applications was successfully fabricated in the porosity range of 40%-50% (volume fraction) by controlling the SLS parameters and sintering behaviour. The porosity of the sintered compacts was investigated as a function of the SLS parameters and the furnace cycle. Compressive stress and elastic modulus of the 316L stainless steel material were determined. The compressive strength was found to be ranging from 21 to 32 MPa and corresponding elastic modulus ranging from 26 to 43 GPa. The present parts are promising for biomedical applications since the optimal porosity of implant materials for ingrowths of new-bone tissues is in the range of 20%-59% (volume fraction) and mechanical properties are matching with human bone.
基金financially supported by the National Natural Science Foundation of China (No. 51271018)the Proprietary Program of the State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing (Nos.2011Z-01 and 2012Z-01)
文摘Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr–Cu–Fe–Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson's ratio and low Young's and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316 L steel in phosphate buffer solution(PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young's modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications.
文摘The biomimetic coating process in comparison with other processes is reviewed. This processing shows advantages in the surface bio-modification, such as low cost and flexible processing, wide range of apatite composition and thickness, non-line-of-sight characteristic and possibility to coat polymers and porous implants. The (bio-)(mimetic) apatite coating is made up of larger number of globules with size of 15μm. Each globule is a group of (numerous) flakes with a size range of 100200nm to 30μm in length and 0.11μm in thickness. In-vitro and (in-vivo) studies show that the biomimetic apatite coating can promote an early and strong bonding to bone or promote the bone in-growth into the porous structure, which will be beneficial to the cementless stable fixation of orthopaedic implants. Recently developed co-precipitation of a kind of protein molecules into the HA coating shows much (promising.)
基金supported by Key Research Program of Frontier Sciences of CAS(No.QYKJZD-SSW-SLH02).
文摘With the advent of tissue engineering and biomedicine,the creation of extracellular matrix(ECM)biomaterials for in vitro applications has become a prominent and promising strategy.These ECM materials provide physical,biochemical,and mechanical properties that guide cellular behaviors,such as proliferation,differentiation,migration,and apoptosis.Because micro-and nano-patterned materials have a unique surface topology and low energy replication process that directly affect cellular biological behaviors at the interface,the fabrication of micro-nano pattern biomaterials and the regulation of surface physical and chemical properties are of great significance in the fields of cell regulation,tissue engineering,and regenerative medicine.Herein,we provide a comprehensive review of the progress in the fabrication and application of patterned materials based on the coupling of mechanical action at the micro-and nano-meter scale,including photolithography,micro-contact printing,electron beam lithography,electrospinning,and 3D printing technology.Furthermore,a summary of the fabrication process,underlying principles,as well as the advantages and disadvantages of various technologies are reviewed.We also discuss the influence of material properties on the fabrication of micro-and nano-patterns.
基金supported by the National Natural Science Youth Foundation of China(Grant 82001975)The Innovation Fund on Medicine and Education Connection of Jiangsu University(KYCX23_3759).
文摘Wound healing is a long-term,multi-stage biological process that mainly includes haemostatic,inflammatory,proliferative and tissue remodelling phases.Controlling infection and inflammation and promoting tissue regeneration can contribute well to wound healing.Smart biomaterials offer significant advantages in wound healing because of their ability to control wound healing in time and space.Understanding how biomaterials are designed for different stages of wound healing will facilitate future personalized material tailoring for different wounds,making them beneficial for wound therapy.This review summarizes the design approaches of biomaterials in the field of anti-inflammatory,antimicrobial and tissue regeneration,highlights the advanced precise control achieved by biomaterials in different stages of wound healing and outlines the clinical and practical applications of biomaterials in wound healing.
文摘背景:骨蜡是可用于骨止血的填塞剂,国内外虽一直在修正骨蜡配方,但无法改变其难以被吸收的核心瓶颈,因此开发具有止血、成骨和抗菌等功能化的骨科止血材料替代骨蜡具有迫切的临床需求。目的:回顾包括骨蜡和其替代材料在内的骨科止血材料的发展历程。方法:检索Pub Med、Web of Science、万方数据库、中国知网及维普数据库中与骨蜡、止血材料、骨科止血材料研究进展相关的文献,并通过阅读文章中的摘要部分初筛,选择了136篇文献纳入综述。结果与结论:为替代传统骨蜡,研究人员从止血、成骨等实际场景的需求出发,开发出各式骨科止血材料,但相关研究多集中于基础的理化和性能测试,缺乏系统的评价体系,同时欠缺足够的大动物实验和临床试验报道。因此,目前骨蜡依旧是公认的骨科止血材料,其根本原因是已有材料的设计无法适时满足术中止血、术后成骨及临床上的新需求。未来还需要对现有止血和成骨材料的结构、组分和功能进行整合和再设计,以满足不断提高的止血与成骨需求。