A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces...A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.展开更多
Due to the conflict between equilibrium and constitutive requirements,Eringen’s strain-driven nonlocal integral model is not applicable to nanostructures of engineering interest.As an alternative,the stress-driven mo...Due to the conflict between equilibrium and constitutive requirements,Eringen’s strain-driven nonlocal integral model is not applicable to nanostructures of engineering interest.As an alternative,the stress-driven model has been recently developed.In this paper,for higher-order shear deformation beams,the ill-posed issue(i.e.,excessive mandatory boundary conditions(BCs)cannot be met simultaneously)exists not only in strain-driven nonlocal models but also in stress-driven ones.The well-posedness of both the strain-and stress-driven two-phase nonlocal(TPN-Strain D and TPN-Stress D)models is pertinently evidenced by formulating the static bending of curved beams made of functionally graded(FG)materials.The two-phase nonlocal integral constitutive relation is equivalent to a differential law equipped with two restriction conditions.By using the generalized differential quadrature method(GDQM),the coupling governing equations are solved numerically.The results show that the two-phase models can predict consistent scale-effects under different supported and loading conditions.展开更多
The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwi...The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.展开更多
An asymptotic perturbation method is presented based on the Fourier expansion and temporal rescaling to investigate the nonlinear oscillations and chaotic dynamics of a simply supported angle-ply composite laminated r...An asymptotic perturbation method is presented based on the Fourier expansion and temporal rescaling to investigate the nonlinear oscillations and chaotic dynamics of a simply supported angle-ply composite laminated rectangular thin plate with parametric and external excitations.According to the Reddy's third-order plate theory,the governing equations of motion for the angle-ply composite laminated rectangular thin plate are derived by using the Hamilton's principle.Then,the Galerkin procedure is applied to the partial differential governing equation to obtain a two-degrees-of-freedom nonlinear system including the quadratic and cubic nonlinear terms.Such equations are utilized to deal with the resonant case of 1:1 internal resonance and primary parametric resonance-1/2 subharmonic resonance.Furthermore,the stability analysis is given for the steady-state solutions of the averaged equation.Based on the averaged equation obtained by the asymptotic perturbation method,the phase portrait and power spectrum are used to analyze the multi-pulse chaotic motions of the angle-ply composite laminated rectangular thin plate.Under certain conditions the various chaotic motions of the angle-ply composite laminated rectangular thin plate are found.展开更多
In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple st...In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple stress theory (MCST) is con- sidered in order to capture the size effects. The surrounding elastic medium is described by a visco-Pasternak foundation model, which accounts for normal, transverse shear, and damping loads. The motion equations are derived based on Hamilton's principle. The differential quadrature method (DQM) in conjunction with the Bolotin method is used in order to calculate the dynamic instability region (DIR) of SWCNTs. The effects of differ- ent parameters, such as nonlocal parameter, visco-Pasternak foundation, mode numbers, and geometrical parameters, are shown on the dynamic instability of SWCNTs. The re- sults depict that increasing the nonlocal parameter shifts the DIR to right. The results presented in this paper would be helpful in design and manufacturing of nano-electromechanical system (NEMS) and micro-electro-mechanical system (MEMS).展开更多
This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of bea...This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.展开更多
Based on the first-order shear deformable beam theory, a refined model for composite beams containing a through-the-width delamination is presented, and the deformation at the delamination front is considered. Differe...Based on the first-order shear deformable beam theory, a refined model for composite beams containing a through-the-width delamination is presented, and the deformation at the delamination front is considered. Different from the ordinary delami- nated beam theory, each of the perfectly bonded portions of the new model is constructed as two separated beams along the interface without assuming a plane section at the de- lamination front. The governing equations of the delaminated portions and bonded ones are established, combined with continuity conditions of displacements and internal forces. Solutions of delaminated composite beams with different boundary conditions, delamina- tion locations and sizes axe shown in excellent agreement with the finite element results, showing efficiency and applicability of the present model.展开更多
This research work deals with a study on dynamic behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC)beams under various types of dynamic loads.Carbon nanotubes(CNTs)are used as the reinforci...This research work deals with a study on dynamic behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC)beams under various types of dynamic loads.Carbon nanotubes(CNTs)are used as the reinforcing materials that distribute continuously across the beam thickness.By using third order shear deformable theory(TSDT)in this current study,the straightness and normality of the transverse normal after deformation are unconstrained.The equations of motion based on TSDT are solved by Gram-Schmidt-Ritz method in which the displacement functions are generated via Gram-Schmidt procedure.Additionally,the time-integration of Newmark is also employed to carry out dynamic response of the beams under dynamic loads.Several effects such as material distributions,types of dynamic loads,boundary conditions and so on are taken into account.According to numerical results,it can be revealed that adding small amount of CNTs can reduce considerably the dynamic amplitude of FG-CNTRC beams.Moreover,the dynamic analysis of beam-like structures plays an important role in structural design because mass inertia matrix of the beam being involved in the equations of motion,which yields much larger deflection than that predicted by simple static analysis.展开更多
In structural analysis, it is often necessary to determine the geometrical properties of cross section. The location of the shear center is greater importance for an arbitrary cross section. In this study, the problem...In structural analysis, it is often necessary to determine the geometrical properties of cross section. The location of the shear center is greater importance for an arbitrary cross section. In this study, the problems of coupled shearing and torsional were analyzed by using the finite element method. Namely, the simultaneous equations with respect to the warping, shear deflection, angle of torsion and Lagrange’s multipliers are derived by finite element approximation. Solving them numerically, the matrix of the shearing rigidity and torsional rigidity is obtained. This matrix indicates the coupled shearing and torsional deflection. The shear center can be obtained determining the coordinate axes so as to eliminate the non-diagonal terms. Several numerical examples are performed and show that the present method gives excellent results for an arbitrary cross section.展开更多
Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the co...Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the continuity of in-plane displacements and trans-verse shear stresses.The current LW-TOSD can be applied to arbitrary multi-layer laminated structures with only seven Degrees of Freedom(DOFs)for each element node and eliminates the use of the shear correction factors.Moreover,a shear penalty stiffness matrix is constructed to sat-isfy artificial constraints to optimize the structural shear strain.A dynamic finite element model is obtained based on LW-TOSD using the Hamilton's principle.First,the accuracy of the current model is validated by comparing with literature and ABAQUS results.Then,this study carries out numerical investigations of piezolaminated structures for different width-to-thickness ratios,length-to-width ratios,penalty stiffness matrix,boundary conditions,electric fields and dynamics.展开更多
Nonlinear forced vibrations and natural frequency of sandwich functionally graded material doubly curved shallow shell with a rectangular base are investigated. The sandwich functionally graded material(FGM) doubly cu...Nonlinear forced vibrations and natural frequency of sandwich functionally graded material doubly curved shallow shell with a rectangular base are investigated. The sandwich functionally graded material(FGM) doubly curved shell is subjected to a harmonic point load at centre. The sandwich doubly curved shell with homogeneous face sheets and FGM face sheets is considered respectively when the natural frequencies are studied. Reddy's third order shear deformation theory is expanded in which stretching effects in thickness are considered by introducing the secant function. Hamilton's principle and von-Karman type nonlinear geometric equation are applied to obtain partial differential equation of the FGM sandwich doubly curved shell. Comparative studies with other shear deformation theories are carried out to validate the present formulation. Navier method is used to discuss the natural vibration frequencies of the FGM sandwich doubly curved shell. Numerical simulation is applied to demonstrate the nonlinear dynamic responses of the FGM sandwich doubly curved shell. Multiple periods, quasi-period and chaos are detected for the dynamic system for different core thickness.展开更多
基金The project supported by the National Natural Science Foundation of China(10172023)
文摘A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.
基金Project supported by the National Natural Science Foundation of China(No.11672131)。
文摘Due to the conflict between equilibrium and constitutive requirements,Eringen’s strain-driven nonlocal integral model is not applicable to nanostructures of engineering interest.As an alternative,the stress-driven model has been recently developed.In this paper,for higher-order shear deformation beams,the ill-posed issue(i.e.,excessive mandatory boundary conditions(BCs)cannot be met simultaneously)exists not only in strain-driven nonlocal models but also in stress-driven ones.The well-posedness of both the strain-and stress-driven two-phase nonlocal(TPN-Strain D and TPN-Stress D)models is pertinently evidenced by formulating the static bending of curved beams made of functionally graded(FG)materials.The two-phase nonlocal integral constitutive relation is equivalent to a differential law equipped with two restriction conditions.By using the generalized differential quadrature method(GDQM),the coupling governing equations are solved numerically.The results show that the two-phase models can predict consistent scale-effects under different supported and loading conditions.
基金supported by the National Natural Science Foundation of China(Nos.11922205,12072201)the Fundamental Research Fund for the Central Universities(No.N2005019)。
文摘The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.
基金supported by the National Natural Science Foundation of China (Grant Nos.10732020,10872010)the National Science Fund for Distinguished Young Scholars (Grant No.10425209)
文摘An asymptotic perturbation method is presented based on the Fourier expansion and temporal rescaling to investigate the nonlinear oscillations and chaotic dynamics of a simply supported angle-ply composite laminated rectangular thin plate with parametric and external excitations.According to the Reddy's third-order plate theory,the governing equations of motion for the angle-ply composite laminated rectangular thin plate are derived by using the Hamilton's principle.Then,the Galerkin procedure is applied to the partial differential governing equation to obtain a two-degrees-of-freedom nonlinear system including the quadratic and cubic nonlinear terms.Such equations are utilized to deal with the resonant case of 1:1 internal resonance and primary parametric resonance-1/2 subharmonic resonance.Furthermore,the stability analysis is given for the steady-state solutions of the averaged equation.Based on the averaged equation obtained by the asymptotic perturbation method,the phase portrait and power spectrum are used to analyze the multi-pulse chaotic motions of the angle-ply composite laminated rectangular thin plate.Under certain conditions the various chaotic motions of the angle-ply composite laminated rectangular thin plate are found.
文摘In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple stress theory (MCST) is con- sidered in order to capture the size effects. The surrounding elastic medium is described by a visco-Pasternak foundation model, which accounts for normal, transverse shear, and damping loads. The motion equations are derived based on Hamilton's principle. The differential quadrature method (DQM) in conjunction with the Bolotin method is used in order to calculate the dynamic instability region (DIR) of SWCNTs. The effects of differ- ent parameters, such as nonlocal parameter, visco-Pasternak foundation, mode numbers, and geometrical parameters, are shown on the dynamic instability of SWCNTs. The re- sults depict that increasing the nonlocal parameter shifts the DIR to right. The results presented in this paper would be helpful in design and manufacturing of nano-electromechanical system (NEMS) and micro-electro-mechanical system (MEMS).
文摘This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.
基金supported by the National Natural Science Foundation of China (No.10932001)the Fanzhou Foundation (No.20070501)the Scientific Research Foundation for Returned Scholars of Ministry of Education of China
文摘Based on the first-order shear deformable beam theory, a refined model for composite beams containing a through-the-width delamination is presented, and the deformation at the delamination front is considered. Different from the ordinary delami- nated beam theory, each of the perfectly bonded portions of the new model is constructed as two separated beams along the interface without assuming a plane section at the de- lamination front. The governing equations of the delaminated portions and bonded ones are established, combined with continuity conditions of displacements and internal forces. Solutions of delaminated composite beams with different boundary conditions, delamina- tion locations and sizes axe shown in excellent agreement with the finite element results, showing efficiency and applicability of the present model.
基金supported by the New Strategic Research(P2P)project(phase 2),Walailak University,Thailand.
文摘This research work deals with a study on dynamic behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC)beams under various types of dynamic loads.Carbon nanotubes(CNTs)are used as the reinforcing materials that distribute continuously across the beam thickness.By using third order shear deformable theory(TSDT)in this current study,the straightness and normality of the transverse normal after deformation are unconstrained.The equations of motion based on TSDT are solved by Gram-Schmidt-Ritz method in which the displacement functions are generated via Gram-Schmidt procedure.Additionally,the time-integration of Newmark is also employed to carry out dynamic response of the beams under dynamic loads.Several effects such as material distributions,types of dynamic loads,boundary conditions and so on are taken into account.According to numerical results,it can be revealed that adding small amount of CNTs can reduce considerably the dynamic amplitude of FG-CNTRC beams.Moreover,the dynamic analysis of beam-like structures plays an important role in structural design because mass inertia matrix of the beam being involved in the equations of motion,which yields much larger deflection than that predicted by simple static analysis.
文摘In structural analysis, it is often necessary to determine the geometrical properties of cross section. The location of the shear center is greater importance for an arbitrary cross section. In this study, the problems of coupled shearing and torsional were analyzed by using the finite element method. Namely, the simultaneous equations with respect to the warping, shear deflection, angle of torsion and Lagrange’s multipliers are derived by finite element approximation. Solving them numerically, the matrix of the shearing rigidity and torsional rigidity is obtained. This matrix indicates the coupled shearing and torsional deflection. The shear center can be obtained determining the coordinate axes so as to eliminate the non-diagonal terms. Several numerical examples are performed and show that the present method gives excellent results for an arbitrary cross section.
基金support from the National Natural Science Foundation of China (No.11972020)the Natural Science Foundation of Shanghai,China (No.21ZR1424100).
文摘Regarding laminated structures,an electromechanically coupled Finite Element(FE)model based on Layerwise Third-Order Shear Deformation(LW-TOSD)theory is proposed for sta-tic and dynamic analysis.LW-TOSD ensures the continuity of in-plane displacements and trans-verse shear stresses.The current LW-TOSD can be applied to arbitrary multi-layer laminated structures with only seven Degrees of Freedom(DOFs)for each element node and eliminates the use of the shear correction factors.Moreover,a shear penalty stiffness matrix is constructed to sat-isfy artificial constraints to optimize the structural shear strain.A dynamic finite element model is obtained based on LW-TOSD using the Hamilton's principle.First,the accuracy of the current model is validated by comparing with literature and ABAQUS results.Then,this study carries out numerical investigations of piezolaminated structures for different width-to-thickness ratios,length-to-width ratios,penalty stiffness matrix,boundary conditions,electric fields and dynamics.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472056 and 11472298)the Natural Science Foundation of Tianjin City(Grant No.13JCQNJC04400)
文摘Nonlinear forced vibrations and natural frequency of sandwich functionally graded material doubly curved shallow shell with a rectangular base are investigated. The sandwich functionally graded material(FGM) doubly curved shell is subjected to a harmonic point load at centre. The sandwich doubly curved shell with homogeneous face sheets and FGM face sheets is considered respectively when the natural frequencies are studied. Reddy's third order shear deformation theory is expanded in which stretching effects in thickness are considered by introducing the secant function. Hamilton's principle and von-Karman type nonlinear geometric equation are applied to obtain partial differential equation of the FGM sandwich doubly curved shell. Comparative studies with other shear deformation theories are carried out to validate the present formulation. Navier method is used to discuss the natural vibration frequencies of the FGM sandwich doubly curved shell. Numerical simulation is applied to demonstrate the nonlinear dynamic responses of the FGM sandwich doubly curved shell. Multiple periods, quasi-period and chaos are detected for the dynamic system for different core thickness.