By means of continuation theorem of the coincidence degree theory, sufficient conditions are obtained for the existence of periodic solutions of a kind of third-order neutral delay functional differential equation wit...By means of continuation theorem of the coincidence degree theory, sufficient conditions are obtained for the existence of periodic solutions of a kind of third-order neutral delay functional differential equation with deviating arguments.展开更多
In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the eq...In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.展开更多
This paper extends Hojman's conservation law to the third-order differential equation. A new conserved quantity is constructed based on the Lie group of transformation generators of the equations of motion. The gener...This paper extends Hojman's conservation law to the third-order differential equation. A new conserved quantity is constructed based on the Lie group of transformation generators of the equations of motion. The generators contain variations of the time and generalized coordinates. Two independent non-trivial conserved quantities of the third-order ordinary differential equation are obtained. A simple example is presented to illustrate the applications of the results.展开更多
There are given sufficient conditions for the ultimate boundedness of solutions and for the existence of periodic solutions of a certain vector differential equation of third-order.
We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the...We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the original method,i.e.,it is based on a wave decomposition at grid cell interfaces,it can be used to approximate hyperbolic problems in divergence form as well as in quasilinear form and limiting is introduced in the form of a wave limiter.展开更多
<span style="font-family:Verdana;">In the present paper, we introduce a non-polynomial quadratic spline method for solving </span><span style="font-family:Verdana;"><span style...<span style="font-family:Verdana;">In the present paper, we introduce a non-polynomial quadratic spline method for solving </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> boundary value problems. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Third-order</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> singularly perturbed boundary value problems occur frequently in many areas of applied sciences such as solid mechanics, quantum mechanics, chemical reactor </span><span style="font-family:Verdana;">theory, Newtonian fluid mechanics, optimal control, convection</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">diffusion</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> processes, hydrodynamics, aerodynamics, etc. These problems have various important applications in fluid dynamics. The procedure involves a reduction of a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> partial differential equation to a first</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">order ordinary differential </span><span style="font-family:Verdana;">equation. Truncation errors are given. The unconditional stability of the method</span> <span style="font-family:Verdana;">is analysed by the Von-Neumann stability analysis. The developed method is </span><span style="font-family:Verdana;">tested with an illustrated example, and the results are compared with other methods from the literature, which shows the applicability and </span><span style="font-family:Verdana;">feasibility of </span><span style="font-family:Verdana;">the presented method. Furthermore, </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">graphical comparison between analyt</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ical and approximate solution</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> is also shown for the illustrated example.</span></span></span>展开更多
A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive...A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive solutions are given in terms of their asymptotic magnitudes, and necessary as well as sufficient conditions for the existence of these solutions are also obtained.展开更多
In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equat...In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.展开更多
Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been...Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.展开更多
By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established re...By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.展开更多
This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained b...This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.展开更多
This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the...This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the solution of the lest equation y’(t)=Ay(t) + By(1-t),where A,B denote constant complex N×N-matrices,and t】0.We investigate carefully the characterization of the stability region.展开更多
Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related li...Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related limiting directions is verified.展开更多
By using some differential inequality, a second-order delay differential equation(r(t)x′(t))′ + p(t)x(q(t)) = 0has been investigated and some necessary condition for this equation has a nonoscillatorysolution and so...By using some differential inequality, a second-order delay differential equation(r(t)x′(t))′ + p(t)x(q(t)) = 0has been investigated and some necessary condition for this equation has a nonoscillatorysolution and some sufficient condition which ensures that all of the solutions of the aboveequation are oscillatory are obtained.展开更多
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen...In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.展开更多
Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind sch...Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.展开更多
This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solutio...This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1.展开更多
By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral dela...By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.展开更多
By utilizing a fixed point theorem on cone, some new results on the existence ofpositive periodic solutions for nonautonomous differential equations with delay are derived.
The adapting Runge-Kutta methods with a new interpolation procedure to delay differential equations was introduced by K.J. in't Hout in 1992[1], he proved that the numerical process, satisfies an important asympto...The adapting Runge-Kutta methods with a new interpolation procedure to delay differential equations was introduced by K.J. in't Hout in 1992[1], he proved that the numerical process, satisfies an important asymptotic stability condition. In this paper the convergence of this method under the asymptotic stability and other conditions in theorem 3 is proved.展开更多
文摘By means of continuation theorem of the coincidence degree theory, sufficient conditions are obtained for the existence of periodic solutions of a kind of third-order neutral delay functional differential equation with deviating arguments.
文摘In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.
基金supported by the National Natural Science Foundation of China (Grant No 10872037)the Natural Science Foundation of Anhui Province of China (Grant No 070416226)
文摘This paper extends Hojman's conservation law to the third-order differential equation. A new conserved quantity is constructed based on the Lie group of transformation generators of the equations of motion. The generators contain variations of the time and generalized coordinates. Two independent non-trivial conserved quantities of the third-order ordinary differential equation are obtained. A simple example is presented to illustrate the applications of the results.
文摘There are given sufficient conditions for the ultimate boundedness of solutions and for the existence of periodic solutions of a certain vector differential equation of third-order.
基金This work was supported by the DFG through HE 4858/4-1
文摘We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the original method,i.e.,it is based on a wave decomposition at grid cell interfaces,it can be used to approximate hyperbolic problems in divergence form as well as in quasilinear form and limiting is introduced in the form of a wave limiter.
文摘<span style="font-family:Verdana;">In the present paper, we introduce a non-polynomial quadratic spline method for solving </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> boundary value problems. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Third-order</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> singularly perturbed boundary value problems occur frequently in many areas of applied sciences such as solid mechanics, quantum mechanics, chemical reactor </span><span style="font-family:Verdana;">theory, Newtonian fluid mechanics, optimal control, convection</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">diffusion</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> processes, hydrodynamics, aerodynamics, etc. These problems have various important applications in fluid dynamics. The procedure involves a reduction of a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> partial differential equation to a first</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">order ordinary differential </span><span style="font-family:Verdana;">equation. Truncation errors are given. The unconditional stability of the method</span> <span style="font-family:Verdana;">is analysed by the Von-Neumann stability analysis. The developed method is </span><span style="font-family:Verdana;">tested with an illustrated example, and the results are compared with other methods from the literature, which shows the applicability and </span><span style="font-family:Verdana;">feasibility of </span><span style="font-family:Verdana;">the presented method. Furthermore, </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">graphical comparison between analyt</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ical and approximate solution</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> is also shown for the illustrated example.</span></span></span>
文摘A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive solutions are given in terms of their asymptotic magnitudes, and necessary as well as sufficient conditions for the existence of these solutions are also obtained.
文摘In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.
基金Supported by the National Natural Science Foundation of China(71571001)
文摘Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.
文摘By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.
基金supported by Ministry of Human Resource and Development(MHR-02-23-200-429/304)
文摘This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.
文摘This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the solution of the lest equation y’(t)=Ay(t) + By(1-t),where A,B denote constant complex N×N-matrices,and t】0.We investigate carefully the characterization of the stability region.
基金supported by the National Natural Science Foundation of China(12171050,12071047)the Fundamental Research Funds for the Central Universities(500421126)。
文摘Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related limiting directions is verified.
基金Supported by the National Natural Science Foundation of China(10061004) Supported by the Natural Sciences Foundation of Yunnan province(2003A0001M)
文摘By using some differential inequality, a second-order delay differential equation(r(t)x′(t))′ + p(t)x(q(t)) = 0has been investigated and some necessary condition for this equation has a nonoscillatorysolution and some sufficient condition which ensures that all of the solutions of the aboveequation are oscillatory are obtained.
基金Supported by the Natural Science Foundation of China(10471086)Supported by the Science Research Foundation of Department of Education of Hunan Province(07C164)
文摘In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.
基金supported by the Department of Science & Technology, Government of India under research grant SR/S4/MS:318/06.
文摘Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.
文摘This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1.
文摘By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.
基金Supported by the Natural Science Foundation of Guangdong Province(032469)
文摘By utilizing a fixed point theorem on cone, some new results on the existence ofpositive periodic solutions for nonautonomous differential equations with delay are derived.
文摘The adapting Runge-Kutta methods with a new interpolation procedure to delay differential equations was introduced by K.J. in't Hout in 1992[1], he proved that the numerical process, satisfies an important asymptotic stability condition. In this paper the convergence of this method under the asymptotic stability and other conditions in theorem 3 is proved.