<span style="font-family:Verdana;">In the present paper, we introduce a non-polynomial quadratic spline method for solving </span><span style="font-family:Verdana;"><span style...<span style="font-family:Verdana;">In the present paper, we introduce a non-polynomial quadratic spline method for solving </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> boundary value problems. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Third-order</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> singularly perturbed boundary value problems occur frequently in many areas of applied sciences such as solid mechanics, quantum mechanics, chemical reactor </span><span style="font-family:Verdana;">theory, Newtonian fluid mechanics, optimal control, convection</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">diffusion</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> processes, hydrodynamics, aerodynamics, etc. These problems have various important applications in fluid dynamics. The procedure involves a reduction of a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> partial differential equation to a first</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">order ordinary differential </span><span style="font-family:Verdana;">equation. Truncation errors are given. The unconditional stability of the method</span> <span style="font-family:Verdana;">is analysed by the Von-Neumann stability analysis. The developed method is </span><span style="font-family:Verdana;">tested with an illustrated example, and the results are compared with other methods from the literature, which shows the applicability and </span><span style="font-family:Verdana;">feasibility of </span><span style="font-family:Verdana;">the presented method. Furthermore, </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">graphical comparison between analyt</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ical and approximate solution</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> is also shown for the illustrated example.</span></span></span>展开更多
Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr...Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.展开更多
The main goal of this work is to develop an effective technique for solving nonlinear systems of Volterra integral equations. The main tools are the cardinal spline functions on small compact supports. We solve a syst...The main goal of this work is to develop an effective technique for solving nonlinear systems of Volterra integral equations. The main tools are the cardinal spline functions on small compact supports. We solve a system of algebra equations to approximate the solution of the system of integral equations. Since the matrix for the algebraic system is nearly triangular, It is relatively painless to solve for the unknowns and an approximation of the original solution with high precision is accomplished. In order to enhance the accuracy, several cardinal splines are employed in the paper. Our schemes were compared with other techniques proposed in recent papers and the advantage of our method was exhibited with several numerical examples.展开更多
UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived β-diketonate have been studied at the B3LYP/6-31G* level. The results showed that the introduction of electron-drawing g...UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived β-diketonate have been studied at the B3LYP/6-31G* level. The results showed that the introduction of electron-drawing group -CF3 and -C3F7 on β-diketonate made the strongest absorption peak red-shift and the lowest energy absorption blue-shied. Introduction of -OC2H5 on the benzene or pyridine ring made the lowest energy absorption blue-shift. When the -C2H3 was introduced on the benzene or pyridine ring, the lowest energy absorption was red-shifted. Introduction of electron-donating group on β-diketonate can enlarge their nonlinear optical properties. On the contrary, the introduction of electron-drawing group dropped it down.展开更多
In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems ...In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems at different step lengths. The approximate solution is compared with the solution obtained by eighth degree splines and exact solution. It has been observed that the approximate solution is an excellent agreement with exact solution. Low absolute error indicates that our numerical method is effective for solving high order linear boundary value problems.展开更多
Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of...Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.展开更多
In this paper,we give four characteristic theorems of the natural Tchebysheff splint functionassociated with multiple knots.These theorems possess specific form,that arc convenient forapplicaton;In the case of with si...In this paper,we give four characteristic theorems of the natural Tchebysheff splint functionassociated with multiple knots.These theorems possess specific form,that arc convenient forapplicaton;In the case of with simple knots or polynomial splint,the corollaries of this paper’s the-orems give corresponding results.展开更多
The paper introduces a method to get three-dimensional reproduction of log shape by adopting Spline Function in fitting the curve of the finite log data. The method has ad-vantages of higher accuracy, less acquired da...The paper introduces a method to get three-dimensional reproduction of log shape by adopting Spline Function in fitting the curve of the finite log data. The method has ad-vantages of higher accuracy, less acquired data, easier to use, etc. Making use of high-precision drawing function of computer, the graphs of log geometric shape in different visual angles can be achieved easily with this method. It also provided a firm foundation for the determination of optimum saw cutting scheme.展开更多
Approximation theory experienced a long term history. Since 50’ last century, the rise of spline function as well as the advance of calculation promotes the growth of classical approximation theory and makes them dev...Approximation theory experienced a long term history. Since 50’ last century, the rise of spline function as well as the advance of calculation promotes the growth of classical approximation theory and makes them develop a profound theory in maths, and application values have shown among the field of scientific calculation and engineering technology and etc. At present, the study of spline function had made a great progress and had a lot of fruits, as for that, the reader could look up the book [1] or [2]. Nevertheless, the research staff pays less attention to exponential spline function, since polynomial spline function is a special case of that, so it is much essential and meaningful for one to explore the nature of exponential spline function.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
The aim of this paper is to approximate the solution of system of fractional delay differential equations. Our technique relies on the use of suitable spline functions of polynomial form. We introduce the description ...The aim of this paper is to approximate the solution of system of fractional delay differential equations. Our technique relies on the use of suitable spline functions of polynomial form. We introduce the description of the proposed approximation method. The error analysis and stability of the method are theoretically investigated. Numerical example is given to illustrate the applicability, accuracy and stability of the proposed method.展开更多
In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection bein...In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.展开更多
In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
A surface spline function is used to fit a coal seam surface in structural anal ysis in coal geology. From the surface spline function, the first and second partial derivatives can also be derived and used to structur...A surface spline function is used to fit a coal seam surface in structural anal ysis in coal geology. From the surface spline function, the first and second partial derivatives can also be derived and used to structural analysis, especially for recogni tion of the concealed structures. The detection of structures related to faulting is em phasized.展开更多
In the present paper,a new criterion is derived to obtain the optimum fitting curve while using Cubic B-spline basis functions to remove the statistical noise in the spectroscopic data.In this criterion,firstly,smooth...In the present paper,a new criterion is derived to obtain the optimum fitting curve while using Cubic B-spline basis functions to remove the statistical noise in the spectroscopic data.In this criterion,firstly,smoothed fitting curves using Cubic B-spline basis functions are selected with the increasing knot number.Then,the best fitting curves are selected according to the value of the minimum residual sum of squares(RSS)of two adjacent fitting curves.In the case of more than one best fitting curves,the authors use Reinsch's first condition to find a better one.The minimum residual sum of squares(RSS)of fitting curve with noisy data is not recommended as the criterion to determine the best fitting curve,because this value decreases to zero as the number of selected channels increases and the minimum value gives no smoothing effect.Compared with Reinsch's method,the derived criterion is simple and enables the smoothing conditions to be determined automatically without any initial input parameter.With the derived criterion,the satisfactory result was obtained for the experimental spectroscopic data to remove the statistical noise using Cubic B-spline basis functions.展开更多
The explicit expression of the G3 basis function is presented in this paper. It is derived by constructing the conversion matrix between G3 basis function and Brzier representation. After the matrix decomposition, equ...The explicit expression of the G3 basis function is presented in this paper. It is derived by constructing the conversion matrix between G3 basis function and Brzier representation. After the matrix decomposition, equations for constructing G3 splines can be presented independently of geometric shape parameters' values. It makes the equation's solving easier. It is also known that the general form of the G3spline basis function is given in the first time. Its geometric construction method is presented.展开更多
In this paper, the spatial-temporal gravity variation patterns of the northeastern margin of Qinghal-Xizang (Tibet) Plateau in 1992 - 2001 are modeled using bicubic spline interpolation functions and the relations o...In this paper, the spatial-temporal gravity variation patterns of the northeastern margin of Qinghal-Xizang (Tibet) Plateau in 1992 - 2001 are modeled using bicubic spline interpolation functions and the relations of gravity change with seismicity and tectonic movement are discussed preliminarily. The results show as follows: ① Regional gravitational field changes regularly and the gravity abnormity zone or gravity concentration zone appears in the earthquake preparation process; ②In the significant time period, the gravity variation shows different features in the northwest, southeast and northeast parts of the surveyed region respectively, with Lanzhou as its boundary;③The gravity variation distribution is basically identical to the strike of tectonic fault zone of the region, and the contour of gravity variation is closely related to the fault distribution.展开更多
This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method extended to functional integ...This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method extended to functional integral and integro-differential equations. For showing efficiency of the method we give some numerical examples.展开更多
A new method——the third power B-spline function method is developed to analyse the stability and the buckle of rolled strip under residual stress.The large deflection theory of thin plate is used to calculate the bu...A new method——the third power B-spline function method is developed to analyse the stability and the buckle of rolled strip under residual stress.The large deflection theory of thin plate is used to calculate the buckle of rolled strip and criterion of critical buckle is given.The computed results tally with those of experiment well,which provides theoretical basis and method for developing the mathematical model of flatness control.展开更多
The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific com...The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific community takes a very strong view on this matter, and the Health treats all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No. 4, 334-339, 2012, has been removed from this site.展开更多
文摘<span style="font-family:Verdana;">In the present paper, we introduce a non-polynomial quadratic spline method for solving </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> boundary value problems. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Third-order</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> singularly perturbed boundary value problems occur frequently in many areas of applied sciences such as solid mechanics, quantum mechanics, chemical reactor </span><span style="font-family:Verdana;">theory, Newtonian fluid mechanics, optimal control, convection</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">diffusion</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> processes, hydrodynamics, aerodynamics, etc. These problems have various important applications in fluid dynamics. The procedure involves a reduction of a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">third-order</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> partial differential equation to a first</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">order ordinary differential </span><span style="font-family:Verdana;">equation. Truncation errors are given. The unconditional stability of the method</span> <span style="font-family:Verdana;">is analysed by the Von-Neumann stability analysis. The developed method is </span><span style="font-family:Verdana;">tested with an illustrated example, and the results are compared with other methods from the literature, which shows the applicability and </span><span style="font-family:Verdana;">feasibility of </span><span style="font-family:Verdana;">the presented method. Furthermore, </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">graphical comparison between analyt</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ical and approximate solution</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> is also shown for the illustrated example.</span></span></span>
文摘Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
文摘The main goal of this work is to develop an effective technique for solving nonlinear systems of Volterra integral equations. The main tools are the cardinal spline functions on small compact supports. We solve a system of algebra equations to approximate the solution of the system of integral equations. Since the matrix for the algebraic system is nearly triangular, It is relatively painless to solve for the unknowns and an approximation of the original solution with high precision is accomplished. In order to enhance the accuracy, several cardinal splines are employed in the paper. Our schemes were compared with other techniques proposed in recent papers and the advantage of our method was exhibited with several numerical examples.
基金supported by the National Natural Science Foundation of China(21172161)
文摘UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived β-diketonate have been studied at the B3LYP/6-31G* level. The results showed that the introduction of electron-drawing group -CF3 and -C3F7 on β-diketonate made the strongest absorption peak red-shift and the lowest energy absorption blue-shied. Introduction of -OC2H5 on the benzene or pyridine ring made the lowest energy absorption blue-shift. When the -C2H3 was introduced on the benzene or pyridine ring, the lowest energy absorption was red-shifted. Introduction of electron-donating group on β-diketonate can enlarge their nonlinear optical properties. On the contrary, the introduction of electron-drawing group dropped it down.
文摘In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems at different step lengths. The approximate solution is compared with the solution obtained by eighth degree splines and exact solution. It has been observed that the approximate solution is an excellent agreement with exact solution. Low absolute error indicates that our numerical method is effective for solving high order linear boundary value problems.
文摘Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.
文摘In this paper,we give four characteristic theorems of the natural Tchebysheff splint functionassociated with multiple knots.These theorems possess specific form,that arc convenient forapplicaton;In the case of with simple knots or polynomial splint,the corollaries of this paper’s the-orems give corresponding results.
文摘The paper introduces a method to get three-dimensional reproduction of log shape by adopting Spline Function in fitting the curve of the finite log data. The method has ad-vantages of higher accuracy, less acquired data, easier to use, etc. Making use of high-precision drawing function of computer, the graphs of log geometric shape in different visual angles can be achieved easily with this method. It also provided a firm foundation for the determination of optimum saw cutting scheme.
文摘Approximation theory experienced a long term history. Since 50’ last century, the rise of spline function as well as the advance of calculation promotes the growth of classical approximation theory and makes them develop a profound theory in maths, and application values have shown among the field of scientific calculation and engineering technology and etc. At present, the study of spline function had made a great progress and had a lot of fruits, as for that, the reader could look up the book [1] or [2]. Nevertheless, the research staff pays less attention to exponential spline function, since polynomial spline function is a special case of that, so it is much essential and meaningful for one to explore the nature of exponential spline function.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
文摘The aim of this paper is to approximate the solution of system of fractional delay differential equations. Our technique relies on the use of suitable spline functions of polynomial form. We introduce the description of the proposed approximation method. The error analysis and stability of the method are theoretically investigated. Numerical example is given to illustrate the applicability, accuracy and stability of the proposed method.
文摘In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.
文摘In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
文摘A surface spline function is used to fit a coal seam surface in structural anal ysis in coal geology. From the surface spline function, the first and second partial derivatives can also be derived and used to structural analysis, especially for recogni tion of the concealed structures. The detection of structures related to faulting is em phasized.
基金Supported by the Science and Technology Development Fund of Macao(China)grant(No.042/2007/A3,No.003/2008/A1)partly supported by NSFC Project(No.10631080)National Key Basic Research Project of China grant(No.2004CB318000)
文摘In the present paper,a new criterion is derived to obtain the optimum fitting curve while using Cubic B-spline basis functions to remove the statistical noise in the spectroscopic data.In this criterion,firstly,smoothed fitting curves using Cubic B-spline basis functions are selected with the increasing knot number.Then,the best fitting curves are selected according to the value of the minimum residual sum of squares(RSS)of two adjacent fitting curves.In the case of more than one best fitting curves,the authors use Reinsch's first condition to find a better one.The minimum residual sum of squares(RSS)of fitting curve with noisy data is not recommended as the criterion to determine the best fitting curve,because this value decreases to zero as the number of selected channels increases and the minimum value gives no smoothing effect.Compared with Reinsch's method,the derived criterion is simple and enables the smoothing conditions to be determined automatically without any initial input parameter.With the derived criterion,the satisfactory result was obtained for the experimental spectroscopic data to remove the statistical noise using Cubic B-spline basis functions.
基金Supported by National Natural Science Foundation of China(Grants 61100129)Open Program of Key Laboratory of Intelligent Information Processing,Institute of Computing Technology,Chinese Academy of Sciences(IIP2014-7)
文摘The explicit expression of the G3 basis function is presented in this paper. It is derived by constructing the conversion matrix between G3 basis function and Brzier representation. After the matrix decomposition, equations for constructing G3 splines can be presented independently of geometric shape parameters' values. It makes the equation's solving easier. It is also known that the general form of the G3spline basis function is given in the first time. Its geometric construction method is presented.
文摘In this paper, the spatial-temporal gravity variation patterns of the northeastern margin of Qinghal-Xizang (Tibet) Plateau in 1992 - 2001 are modeled using bicubic spline interpolation functions and the relations of gravity change with seismicity and tectonic movement are discussed preliminarily. The results show as follows: ① Regional gravitational field changes regularly and the gravity abnormity zone or gravity concentration zone appears in the earthquake preparation process; ②In the significant time period, the gravity variation shows different features in the northwest, southeast and northeast parts of the surveyed region respectively, with Lanzhou as its boundary;③The gravity variation distribution is basically identical to the strike of tectonic fault zone of the region, and the contour of gravity variation is closely related to the fault distribution.
文摘This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method extended to functional integral and integro-differential equations. For showing efficiency of the method we give some numerical examples.
文摘A new method——the third power B-spline function method is developed to analyse the stability and the buckle of rolled strip under residual stress.The large deflection theory of thin plate is used to calculate the buckle of rolled strip and criterion of critical buckle is given.The computed results tally with those of experiment well,which provides theoretical basis and method for developing the mathematical model of flatness control.
文摘The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific community takes a very strong view on this matter, and the Health treats all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No. 4, 334-339, 2012, has been removed from this site.