Electron spectrum in doped n-Si quantum wires is calculated by the Thomas-Fermi (TF) method under finite temperatures. The many-body exchange corrections are taken into account. The doping profile is arbitrary. At the...Electron spectrum in doped n-Si quantum wires is calculated by the Thomas-Fermi (TF) method under finite temperatures. The many-body exchange corrections are taken into account. The doping profile is arbitrary. At the first stage, the electron potential energy is calculated from a simple two-dimensional equation. The effective iteration scheme is proposed there that is valid for multidimensional problems. Then the energy levels and wave functions of this quantum well are simulated from the Schrödinger equations. The expansion by the full set of eigenfunctions of the linear harmonic oscillator is used. The quantum mechanical perturbation theory can be utilized to compute the energy levels. Generally, the perturbation theory for degenerate energy levels should be used.展开更多
Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved usi...Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved using Thomas-Fermi theory to the theory of extreme states of matter appearing under high pressures, high temperatures or strong external fields. Relevant sections of physics and related sciences (astrophysics, quantum chemistry, a number of applied sciences) determine the scope of Thomas-Fermi theory. Popularity Thomas-Fermi theory is related to its relative simplicity, clarity and versatility. The latter means that the result of the calculation by Thomas-Fermi theory applies immediately to all chemical elements: the transition from element to element is as simple scale transformation. These features make it to be a highly convenient tool for qualitative and, in many cases, and quantitative analysis.展开更多
文摘Electron spectrum in doped n-Si quantum wires is calculated by the Thomas-Fermi (TF) method under finite temperatures. The many-body exchange corrections are taken into account. The doping profile is arbitrary. At the first stage, the electron potential energy is calculated from a simple two-dimensional equation. The effective iteration scheme is proposed there that is valid for multidimensional problems. Then the energy levels and wave functions of this quantum well are simulated from the Schrödinger equations. The expansion by the full set of eigenfunctions of the linear harmonic oscillator is used. The quantum mechanical perturbation theory can be utilized to compute the energy levels. Generally, the perturbation theory for degenerate energy levels should be used.
文摘Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development is achieved using Thomas-Fermi theory to the theory of extreme states of matter appearing under high pressures, high temperatures or strong external fields. Relevant sections of physics and related sciences (astrophysics, quantum chemistry, a number of applied sciences) determine the scope of Thomas-Fermi theory. Popularity Thomas-Fermi theory is related to its relative simplicity, clarity and versatility. The latter means that the result of the calculation by Thomas-Fermi theory applies immediately to all chemical elements: the transition from element to element is as simple scale transformation. These features make it to be a highly convenient tool for qualitative and, in many cases, and quantitative analysis.