A simplified finite element model of a human thorax had been developed for probing into the mechani- cal response in simple and complex blast environments. The human thorax model was first created by CT images with bl...A simplified finite element model of a human thorax had been developed for probing into the mechani- cal response in simple and complex blast environments. The human thorax model was first created by CT images with blast loading applied via a coupled arbitrary Lagrangian- Eulerian method, allowing for a variety of loads to be considered. The goal is to analyze the maximum stress distri- butions of lung tissue and peak inward thorax wall velocity and to know the possible regions and levels of lung injury. In parallel, a mathematical model has been modified from the Lobdell model to investigate the detailed percentage of lung injury at each level. The blast loadings around the human tho- rax were obtained from the finite element model, and were then applied in the mathematical model as the boundary con- ditions to predict the normalized work of the human thorax lung. The present results are found in agreement with the modified Bowen curves and the results predicted by Axels- son's model.展开更多
<strong>Objective:</strong> To explore the characteristics and mechanisms of serious injuries of chest caused by road traffic accidents. <strong>Methods:</strong> Totally 112 autopsy cases with...<strong>Objective:</strong> To explore the characteristics and mechanisms of serious injuries of chest caused by road traffic accidents. <strong>Methods:</strong> Totally 112 autopsy cases with chest injuries in the urban of Jingzhou road traffic accidents were collected. Systematic review and analysis of the general information, postmortem examinations and assessments of chest injury had carried out from Feb. 2016 to Mar. 2018. <strong>Results:</strong> Average age of the victims was 52.2 years and the ratio of male to female deaths was 2.39:1. The proportion of motor-cyclists and pedestrians increased significantly. The overwhelming majority of accident vehicles were motorcycles and bicycles. Fractures of ribs and pulmonary contusion were the most common injuries. Craniocerebral and abdominal injuries were the most common associated injuries. <strong>Conclusion:</strong> Fractures of ribs and pulmonary contusion were the most common features of fatal road traffic injuries, often associated with vitreoretinal damage and serious multiple damages. These features reflect the characteristics of great violence in traffic accidents, which provides the evidence of identification of violent injuries.展开更多
Appropriate management of penetrating trauma to the thorax requires knowledge of vulnating agents, as well as the principles of ballistic injury. The importance of the approach’s choice for surgical exploration of th...Appropriate management of penetrating trauma to the thorax requires knowledge of vulnating agents, as well as the principles of ballistic injury. The importance of the approach’s choice for surgical exploration of these injuries, and parietal damage, is an essential factor in decision making in the management and definition of the therapeutic strategy for these injuries. The authors report a clinical case of a penetrating traumatic ballistic wound of the thorax managed in a context of difficult diagnosis in the surgical Unit of the CHUPB.展开更多
Objective: To explore the relationship between the collision parameters of vehicle and the pedestrian thorax injury by establishing the chest simulation models in car-pedestrian collision at different velocities and ...Objective: To explore the relationship between the collision parameters of vehicle and the pedestrian thorax injury by establishing the chest simulation models in car-pedestrian collision at different velocities and angles. Methods: 87 cases of vehicle-to-pedestrian accidents, with detailed injury information and determined vehicle impact parameters, were included. The severity of injury was scaled in line with the Abbreviated Injury Scale (AIS). The chest biomechanical response parameters and change characteristics were obtained by using Hyperworks and LS-DYNA computing. Simulation analysis was applied to compare the characteristics of injuries. Results: When impact velocities at 25, 40 and 55 km/h, respectively, 1) the maximum values of thorax velocity criterion (VC) were for 0.29, 0.83 and 2.58 m/s; and at the same collision velocity, the thorax VC from the impact on pedestrian's front was successively greater than on his back and on his side; 2) the maximum values of peak stress on ribs were 154,177 and 209 MPa; and at the same velocity, peak stress values on ribs from the impact on pedestrian's side were greater than on his front and his back. Conclusion: There is a positive correlation between the severity and risk of thorax injury and the collision velocity and angle of car-thorax crashes. At the same velocity, it is of greater damage risk when the soft tissue of thorax under a front impact; and there is also a greater risk of ribs fracture under a side impact of the thorax. This result is of vital significance for diagnosis and protection of thorax collision injuries.展开更多
Objective:Fragment injury is a type of blast injury that is becoming more and more common in military campaigns and terrorist attacks.Numerical simulation methods investigating the formation of natural fragments and i...Objective:Fragment injury is a type of blast injury that is becoming more and more common in military campaigns and terrorist attacks.Numerical simulation methods investigating the formation of natural fragments and injuries to biological targets are expected to be developed.Methods:A cylindrical warhead model was established and the formation process of natural fragments was simulated using the approach of tied nodes with failure through the explicit finite element(FE)software of LS-DYNA.The interaction between the detonation product and the warhead shell was simulated using the fluidestructure interaction algorithm.A method to simulate the injury of natural fragments to a biological target was presented by transforming Lagrange elements into smooth particle hydrodynamics(SPH)particles after the natural fragments were successfully formed.A computational model of the human thorax was established to simulate the injury induced by natural fragments by the node-to-surface contact algorithm with erosion.Results:The discontinuous velocities of the warhead shell at different locations resulted in the formation of natural fragments with different sizes.The velocities of natural fragments increased rapidly at the initial stage and slowly after the warhead shell fractured.The initial velocities of natural fragments at the central part of the warhead shell were the largest,whereas those at both ends of the warhead shell were the smallest.The natural fragments resulted in bullet holes that were of the same shape as that of the fragments but slightly larger in size than the fragments in the human thorax after they penetrated through.Stress waves propagated in the ribs and enhanced the injury to soft tissues;additionally,ballistic pressure waves ahead of the natural fragments were also an injury factor to the soft tissues.Conclusion:The proposed method is effective in simulating the formation of natural fragments and their injury to biological targets.Moreover,this method will be beneficial for simulating the combined injuries of natural fragments and shock waves to biological targets.展开更多
Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were col...Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were collected(segmented dataset),and chest CT data of 984 patients were screened from the COVID 19-CT dataset(10 cases were randomly selected as whole test dataset,the remaining 974 cases were selected as layer selection dataset).T7—T8 layer was classified based on convolutional neural network(CNN)derived networks,including ResNet,ResNeXt,MobileNet,ShuffleNet,DenseNet,EfficientNet and ConvNeXt,then the accuracy,precision,recall and specificity were used to evaluate the performance of layer selection dataset.The skeletal muscle(SM),subcutaneous adipose tissue(SAT),intermuscular adipose tissue(IMAT)and visceral adipose tissue(VAT)were segmented using classical fully CNN(FCN)derived network,including FCN,SegNet,UNet,Attention UNet,UNET++,nnUNet,UNeXt and CMUNeXt,then Dice similarity coefficient(DSC),intersection over union(IoU)and 95 Hausdorff distance(HD)were used to evaluate the performance of segmented dataset.The automatic body composition analysis system was constructed based on optimal layer selection network and segmentation network,the mean absolute error(MAE),root mean squared error(RMSE)and standard deviation(SD)of MAE were used to evaluate the performance of automatic system for testing the whole test dataset.Results The accuracy,precision,recall and specificity of DenseNet network for automatically classifying T7—T8 layer from chest CT images was 95.06%,84.83%,92.27%and 95.78%,respectively,which were all higher than those of the other layer selection networks.In segmentation of SM,SAT,IMAT and overall,DSC and IoU of UNet++network were all higher,while 95HD of UNet++network were all lower than those of the other segmentation networks.Using DenseNet as the layer selection network and UNet++as the segmentation network,MAE of the automatic body composition analysis system for predicting SM,SAT,IMAT,VAT and MAE was 27.09,6.95,6.65 and 3.35 cm 2,respectively.Conclusion The body composition analysis system based on chest CT could be used to assess content of chest muscle and adipose.Among them,the UNet++network had better segmentation performance in adipose tissue than SM.展开更多
目的:分析肩胛下动脉(SSA)系统的解剖特点,归纳其分布规律。方法:回顾性分析80例胸部增强CT图像,记录SSA的起源及长度,SSA及其分支——旋肩胛动脉(CSA)、胸背动脉(TDA)的管径及伴随静脉的归属,并进行归类。结果:160支腋动脉(AA)中,88.13...目的:分析肩胛下动脉(SSA)系统的解剖特点,归纳其分布规律。方法:回顾性分析80例胸部增强CT图像,记录SSA的起源及长度,SSA及其分支——旋肩胛动脉(CSA)、胸背动脉(TDA)的管径及伴随静脉的归属,并进行归类。结果:160支腋动脉(AA)中,88.13%(141/160)存在SSA分支,其中75.89%(107/141)起源于AA3,24.11%(34/141)起源于AA2;11.87%(19/160)SSA缺如。男性SSA起源于AA2者多于女性(25/80 vs 9/80),女性SSA缺如者多于男性(16/80 vs 3/80),性别间差异显著(P<0.01)。SSA管径为(4.72±0.76)mm,长度为(29.56±11.9)mm,CSA管径为(3.45±0.69)mm,TDA管径为(2.92±0.56)mm。SSA长度与管径性别间差异较明显(P<0.05)。SSA来源不同,分支不同(P<0.001)。AA2来源的分出胸外侧动脉(LTA)的概率高于AA3,AA3来源的发出旋肱后动脉(PCHA)的概率则高于AA2。SSA来源不同,伴随静脉汇入腋静脉点较恒定,92.52%(99/107)AA3来源、94.12%(32/34)AA2来源,52.63%(10/19)SSA缺如的分支伴随静脉汇合后,均汇入腋静脉偏外侧。结论:SSA系统变异较多,性别差异明显。胸部增强CT能清晰显示SSA系统的解剖细节,能为临床术前提供准确的血管评估。展开更多
为研究真实工况下人员在爆炸冲击波作用下的动态响应特性,开展某型云爆弹静爆作用下工事内仿人形装置(Anthropomorphic Test Device,ATD)和绵羊的毁伤试验研究。采用爆炸测试装置和简易假人作为研究对象,通过6发爆炸试验分析爆炸冲击波...为研究真实工况下人员在爆炸冲击波作用下的动态响应特性,开展某型云爆弹静爆作用下工事内仿人形装置(Anthropomorphic Test Device,ATD)和绵羊的毁伤试验研究。采用爆炸测试装置和简易假人作为研究对象,通过6发爆炸试验分析爆炸冲击波在ATD表面传播规律,开展2种人员损伤预测模型的对比分析。研究结果表明:在本试验工况下,冲击波和崩落的混凝土碎块是主要的毁伤元;爆炸冲击波在ATD表面首先发生反射,随后绕射至其他部位,压力曲线表现出非典型冲击波特征,反射叠加效应明显;在典型冲击波特征正压作用时间区间内,由于Axelsson损伤模型线性阻尼项的影响,求解的胸壁运动速度呈现出先增大至峰值后降低的现象;Axelsson损伤模型与UFC 3-340-02规范相比,在人员损伤预测方面相对保守。所得研究结果可为工程应用及毁伤评估提供参考。展开更多
文摘A simplified finite element model of a human thorax had been developed for probing into the mechani- cal response in simple and complex blast environments. The human thorax model was first created by CT images with blast loading applied via a coupled arbitrary Lagrangian- Eulerian method, allowing for a variety of loads to be considered. The goal is to analyze the maximum stress distri- butions of lung tissue and peak inward thorax wall velocity and to know the possible regions and levels of lung injury. In parallel, a mathematical model has been modified from the Lobdell model to investigate the detailed percentage of lung injury at each level. The blast loadings around the human tho- rax were obtained from the finite element model, and were then applied in the mathematical model as the boundary con- ditions to predict the normalized work of the human thorax lung. The present results are found in agreement with the modified Bowen curves and the results predicted by Axels- son's model.
文摘<strong>Objective:</strong> To explore the characteristics and mechanisms of serious injuries of chest caused by road traffic accidents. <strong>Methods:</strong> Totally 112 autopsy cases with chest injuries in the urban of Jingzhou road traffic accidents were collected. Systematic review and analysis of the general information, postmortem examinations and assessments of chest injury had carried out from Feb. 2016 to Mar. 2018. <strong>Results:</strong> Average age of the victims was 52.2 years and the ratio of male to female deaths was 2.39:1. The proportion of motor-cyclists and pedestrians increased significantly. The overwhelming majority of accident vehicles were motorcycles and bicycles. Fractures of ribs and pulmonary contusion were the most common injuries. Craniocerebral and abdominal injuries were the most common associated injuries. <strong>Conclusion:</strong> Fractures of ribs and pulmonary contusion were the most common features of fatal road traffic injuries, often associated with vitreoretinal damage and serious multiple damages. These features reflect the characteristics of great violence in traffic accidents, which provides the evidence of identification of violent injuries.
文摘Appropriate management of penetrating trauma to the thorax requires knowledge of vulnating agents, as well as the principles of ballistic injury. The importance of the approach’s choice for surgical exploration of these injuries, and parietal damage, is an essential factor in decision making in the management and definition of the therapeutic strategy for these injuries. The authors report a clinical case of a penetrating traumatic ballistic wound of the thorax managed in a context of difficult diagnosis in the surgical Unit of the CHUPB.
基金The Natural Science Foundation of China (Project number 31271006), the Chongqing Natural Science Fund (Project number CSTC2012JJYS0004).
文摘Objective: To explore the relationship between the collision parameters of vehicle and the pedestrian thorax injury by establishing the chest simulation models in car-pedestrian collision at different velocities and angles. Methods: 87 cases of vehicle-to-pedestrian accidents, with detailed injury information and determined vehicle impact parameters, were included. The severity of injury was scaled in line with the Abbreviated Injury Scale (AIS). The chest biomechanical response parameters and change characteristics were obtained by using Hyperworks and LS-DYNA computing. Simulation analysis was applied to compare the characteristics of injuries. Results: When impact velocities at 25, 40 and 55 km/h, respectively, 1) the maximum values of thorax velocity criterion (VC) were for 0.29, 0.83 and 2.58 m/s; and at the same collision velocity, the thorax VC from the impact on pedestrian's front was successively greater than on his back and on his side; 2) the maximum values of peak stress on ribs were 154,177 and 209 MPa; and at the same velocity, peak stress values on ribs from the impact on pedestrian's side were greater than on his front and his back. Conclusion: There is a positive correlation between the severity and risk of thorax injury and the collision velocity and angle of car-thorax crashes. At the same velocity, it is of greater damage risk when the soft tissue of thorax under a front impact; and there is also a greater risk of ribs fracture under a side impact of the thorax. This result is of vital significance for diagnosis and protection of thorax collision injuries.
基金The work was funded by the National Science Foundation for Young Scientists of China(11902356)China Postdoctoral Science Foundation(2018M633715)+1 种基金Innovation and Cultivation Fund of the Sixth Medical Center of PLA General Hospital(No.CXPY201825)the Army Scientific Research(LB20182D040012).
文摘Objective:Fragment injury is a type of blast injury that is becoming more and more common in military campaigns and terrorist attacks.Numerical simulation methods investigating the formation of natural fragments and injuries to biological targets are expected to be developed.Methods:A cylindrical warhead model was established and the formation process of natural fragments was simulated using the approach of tied nodes with failure through the explicit finite element(FE)software of LS-DYNA.The interaction between the detonation product and the warhead shell was simulated using the fluidestructure interaction algorithm.A method to simulate the injury of natural fragments to a biological target was presented by transforming Lagrange elements into smooth particle hydrodynamics(SPH)particles after the natural fragments were successfully formed.A computational model of the human thorax was established to simulate the injury induced by natural fragments by the node-to-surface contact algorithm with erosion.Results:The discontinuous velocities of the warhead shell at different locations resulted in the formation of natural fragments with different sizes.The velocities of natural fragments increased rapidly at the initial stage and slowly after the warhead shell fractured.The initial velocities of natural fragments at the central part of the warhead shell were the largest,whereas those at both ends of the warhead shell were the smallest.The natural fragments resulted in bullet holes that were of the same shape as that of the fragments but slightly larger in size than the fragments in the human thorax after they penetrated through.Stress waves propagated in the ribs and enhanced the injury to soft tissues;additionally,ballistic pressure waves ahead of the natural fragments were also an injury factor to the soft tissues.Conclusion:The proposed method is effective in simulating the formation of natural fragments and their injury to biological targets.Moreover,this method will be beneficial for simulating the combined injuries of natural fragments and shock waves to biological targets.
文摘Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were collected(segmented dataset),and chest CT data of 984 patients were screened from the COVID 19-CT dataset(10 cases were randomly selected as whole test dataset,the remaining 974 cases were selected as layer selection dataset).T7—T8 layer was classified based on convolutional neural network(CNN)derived networks,including ResNet,ResNeXt,MobileNet,ShuffleNet,DenseNet,EfficientNet and ConvNeXt,then the accuracy,precision,recall and specificity were used to evaluate the performance of layer selection dataset.The skeletal muscle(SM),subcutaneous adipose tissue(SAT),intermuscular adipose tissue(IMAT)and visceral adipose tissue(VAT)were segmented using classical fully CNN(FCN)derived network,including FCN,SegNet,UNet,Attention UNet,UNET++,nnUNet,UNeXt and CMUNeXt,then Dice similarity coefficient(DSC),intersection over union(IoU)and 95 Hausdorff distance(HD)were used to evaluate the performance of segmented dataset.The automatic body composition analysis system was constructed based on optimal layer selection network and segmentation network,the mean absolute error(MAE),root mean squared error(RMSE)and standard deviation(SD)of MAE were used to evaluate the performance of automatic system for testing the whole test dataset.Results The accuracy,precision,recall and specificity of DenseNet network for automatically classifying T7—T8 layer from chest CT images was 95.06%,84.83%,92.27%and 95.78%,respectively,which were all higher than those of the other layer selection networks.In segmentation of SM,SAT,IMAT and overall,DSC and IoU of UNet++network were all higher,while 95HD of UNet++network were all lower than those of the other segmentation networks.Using DenseNet as the layer selection network and UNet++as the segmentation network,MAE of the automatic body composition analysis system for predicting SM,SAT,IMAT,VAT and MAE was 27.09,6.95,6.65 and 3.35 cm 2,respectively.Conclusion The body composition analysis system based on chest CT could be used to assess content of chest muscle and adipose.Among them,the UNet++network had better segmentation performance in adipose tissue than SM.
文摘目的:分析肩胛下动脉(SSA)系统的解剖特点,归纳其分布规律。方法:回顾性分析80例胸部增强CT图像,记录SSA的起源及长度,SSA及其分支——旋肩胛动脉(CSA)、胸背动脉(TDA)的管径及伴随静脉的归属,并进行归类。结果:160支腋动脉(AA)中,88.13%(141/160)存在SSA分支,其中75.89%(107/141)起源于AA3,24.11%(34/141)起源于AA2;11.87%(19/160)SSA缺如。男性SSA起源于AA2者多于女性(25/80 vs 9/80),女性SSA缺如者多于男性(16/80 vs 3/80),性别间差异显著(P<0.01)。SSA管径为(4.72±0.76)mm,长度为(29.56±11.9)mm,CSA管径为(3.45±0.69)mm,TDA管径为(2.92±0.56)mm。SSA长度与管径性别间差异较明显(P<0.05)。SSA来源不同,分支不同(P<0.001)。AA2来源的分出胸外侧动脉(LTA)的概率高于AA3,AA3来源的发出旋肱后动脉(PCHA)的概率则高于AA2。SSA来源不同,伴随静脉汇入腋静脉点较恒定,92.52%(99/107)AA3来源、94.12%(32/34)AA2来源,52.63%(10/19)SSA缺如的分支伴随静脉汇合后,均汇入腋静脉偏外侧。结论:SSA系统变异较多,性别差异明显。胸部增强CT能清晰显示SSA系统的解剖细节,能为临床术前提供准确的血管评估。
文摘为研究真实工况下人员在爆炸冲击波作用下的动态响应特性,开展某型云爆弹静爆作用下工事内仿人形装置(Anthropomorphic Test Device,ATD)和绵羊的毁伤试验研究。采用爆炸测试装置和简易假人作为研究对象,通过6发爆炸试验分析爆炸冲击波在ATD表面传播规律,开展2种人员损伤预测模型的对比分析。研究结果表明:在本试验工况下,冲击波和崩落的混凝土碎块是主要的毁伤元;爆炸冲击波在ATD表面首先发生反射,随后绕射至其他部位,压力曲线表现出非典型冲击波特征,反射叠加效应明显;在典型冲击波特征正压作用时间区间内,由于Axelsson损伤模型线性阻尼项的影响,求解的胸壁运动速度呈现出先增大至峰值后降低的现象;Axelsson损伤模型与UFC 3-340-02规范相比,在人员损伤预测方面相对保守。所得研究结果可为工程应用及毁伤评估提供参考。