Hexaploid triticale(×Triticosecale,AABBRR)is an important forage crop and a promising energy plant.Transferring D-genome chromosomes or segments from common wheat(Triticum aestivum)into hexaploid triticale is att...Hexaploid triticale(×Triticosecale,AABBRR)is an important forage crop and a promising energy plant.Transferring D-genome chromosomes or segments from common wheat(Triticum aestivum)into hexaploid triticale is attractive in improving its economically important traits.Here,a hexaploid triticale 6D(6A)substitution line Lin 456 derived from the cross between the octoploid triticale line H400 and the hexaploid wheat Lin 56 was identified and analyzed by genomic in situ hybridization(GISH),fluorescence in situ hybridization(FISH),and molecular markers.The GISH analysis showed that Lin 456 is a hexaploid triticalewith 14 rye(Secale cereale)chromosomes and 28 wheat chromosomes,whereas non-denaturing fluorescence in situ hybridization(ND-FISH)and molecular marker analysis revealed that it is a 6D(6A)substitution line.In contrast to previous studies,the signal of Oligo-pSc119.2 was observed at the distal end of 6DL in Lin 456.The wheat chromosome 6D was associatedwith increased grain weight and decreased spikelet number using the genotypic data combined with the phenotypes of the F2 population in the three environments.The thousand-grain weight and grain width in the substitution individuals were significantly higher than those in the non-substitution individuals in the F2 population across the three environments.We propose that the hexaploid triticale 6D(6A)substitution line Lin 456 can be a valuable and promising donor stock for genetic improvement during triticale breeding.展开更多
To provide new experimental materials for QTL analysis of rice yield trait, we constructed a mapping population of 150 1ines (recombination inbred lines, R1L) derived from a cross between rice varieties V20B and CPS...To provide new experimental materials for QTL analysis of rice yield trait, we constructed a mapping population of 150 1ines (recombination inbred lines, R1L) derived from a cross between rice varieties V20B and CPSLO17, and localized QTLs and evaluated the genetic effects in the two parents and 150 RILs for thousand-grain weight trait by using internal mapping method of software MapQTL5 combining thousand-grain weight phenotypic data of the RILs. The results showed that a new QTL (qTGW-3) related to thousand-grain weight trait was detected. Individual QTL (LOD=4.14) explained 11.9% of the observed phenotypic variance. And the QTL alleles came from the parent V20B.展开更多
Starch is the most important component in the endosperm, and its synthesis is regulated by multiple transcription factors(TFs) in cereals. However, whether the functions of these TFs are conserved among cereals remain...Starch is the most important component in the endosperm, and its synthesis is regulated by multiple transcription factors(TFs) in cereals. However, whether the functions of these TFs are conserved among cereals remains unclear. In this study,we cloned a B3 family TF in wheat, named TaABI19, based on its orthologous sequence in maize(Zea mays L.). Alignment of the DNA and protein sequences showed that ABI19 is conserved in maize and wheat(Triticum aestivum L.). We found that TaABI19 is highly expressed in young spikes and developing grains, and encodes a nucleus-localized transcriptional activator in wheat. The taabi19-b1 null mutants obtained by EMS exhibited a down-regulation of starch synthesis, shorter grain length and lower thousand-grain weight(TGW). Furthermore, we proved that TaABI19 could bind to the promoters of TaPBF homologous genes and enhance their expression. Haplotype association showed that TaABI19-B1 is significantly associated with TGW. We found that Hap2 and Hap3 were favored and had undergone positive selection in China’s wheat breeding programs. Less than 50% of the modern cultivars convey the favored haplotypes, indicating that TaABI19 still can be considered as a target locus for marker-assisted selection breeding to increase TGW in China.展开更多
为了进一步挖掘小麦籽粒相关性状的主效QTL位点,探索籽粒性状之间的遗传关系,利用籽粒性状差异较大的小麦品种安农859和武农988构建的124份DH群体为研究材料,分别测定2 a 7个环境下的粒长、粒宽及千粒质量表型值,开展籽粒性状多元回归分...为了进一步挖掘小麦籽粒相关性状的主效QTL位点,探索籽粒性状之间的遗传关系,利用籽粒性状差异较大的小麦品种安农859和武农988构建的124份DH群体为研究材料,分别测定2 a 7个环境下的粒长、粒宽及千粒质量表型值,开展籽粒性状多元回归分析,并基于DH群体的55K芯片数据进行籽粒相关性状QTL检测。结果表明,多元回归分析中,粒宽对千粒质量的贡献最大。通过完备区间作图对籽粒性状进行QTL定位,除6D和7B染色体外,其他19条染色体上共检测到69个有关籽粒性状的QTL,包括24个千粒质量QTL、28个粒长QTL、17个粒宽QTL,单个QTL的表型解释率为6.87%~27.74%。其中,7A染色体上粒长相关的Qgl.ahau-7A.1在7个环境及BLUP下均被检测到,表型解释率为9.48%~22.26%,加性效应为0.11~0.21 mm,物理区间4.91 Mb(AX-110430243~AX-110442528),可能为新的主效QTL。因此,Qgl.ahau-7A.1位点可作为后续精细定位和分子标记辅助育种重点关注的区域。展开更多
Thousand-grain weight (TGWT) is an important factor affecting grain yield as well as grain quality in rice. A quantitative trait locus (QTL) qTGWT1-1 for TGWT was detected previously near DNA marker RG532 on the short...Thousand-grain weight (TGWT) is an important factor affecting grain yield as well as grain quality in rice. A quantitative trait locus (QTL) qTGWT1-1 for TGWT was detected previously near DNA marker RG532 on the short arm of chromosome 1 in a recombinant inbred line (RIL) population derived from the indica-indica rice cross Zhengshan97B (ZS97B)/Milyang46 (MY46). In this study, two residual het-erozygous lines (RHLs), Ch1 and Ch2, derived from the ZS97B/MY46 RIL F7 population, were used to develop two F6 populations, RIL-1 and RIL-2. The genome of Ch1 and Ch2 contains a heterozygous region flanked by RM1―RM3746 and RM151―RM243 on the short arm of chromosome 1, respectively, but is homozygous in other regions. Two tightly linked QTLs, Gw1-1 and Gw1-2, with the same additive direction and similar effect on TGWT, were detected in the region of QTL qTGWT1-1 in population RIL-2. No QTL was detected in the population RIL-1. Four individual RHLs from the population RIL-2 carrying heterozygous segments flanked by RM151―RM10404, RM10381―RM243, RM10435―RM259 and RM10398―RM5359, respectively, were chosen to develop four F2 populations. Ten maternal homozy-gotes and 10 paternal homozygotes were selected from each of the four F2 populations derived from the four RHLs. The four sets of near isogenic lines (NILs) were grown for phenotyping of TGWT and delimitation of Gw1-1 and Gw1-2. Results showed that Gw1-1 and Gw1-2 were located in the intervals RM10376―RM10398 and RM10404―RM1344 which cover 392.9 and 308.5 kb regions, respectively. The enhancing alleles were from ZS97B at both loci, and no significant interactions were detected. Genetic dissection of Gw1-1 and Gw1-2 has laid a foundation for their cloning and molecular breeding of grain yield and quality in rice.展开更多
以旱稻297为试验材料,比较了在不施氮肥和150 kg hm^-2的施氮量下旱稻297非结构性碳水化合物的生产能力、运转特点及其与产量构成因子的关系,分析了旱稻297氮肥投入与碳水化合物生产和产量形成间的关系。试验结果表明,开花前储藏的非结...以旱稻297为试验材料,比较了在不施氮肥和150 kg hm^-2的施氮量下旱稻297非结构性碳水化合物的生产能力、运转特点及其与产量构成因子的关系,分析了旱稻297氮肥投入与碳水化合物生产和产量形成间的关系。试验结果表明,开花前储藏的非结构性碳水化合物对产量的贡献率为32%-54%,施氮降低了开花前非结构性碳水化合物对产量的贡献率,相对而言开花后光合产物对产量的贡献率略有提高;开花前非结构性碳水化合物的转移效率为48%-65%,施氮后转移效率略有降低;总体而言,施氮降低了开花前后分配给单个籽粒的非结构性碳水化合物的数量,导致千粒重降低;在一定的范围内,随着开花期叶片中可溶性糖浓度的提高,结实率显著提高,但是随着穗中淀粉浓度的提高,结实率显著降低。因此,施氮后非结构性碳水化合物积累不足和转移效率降低同时限制了千粒重和结实率的提高,而叶片中可溶性糖浓度偏低和穗中淀粉浓度偏高限制了结实率的提高,是限制产量提高的主要原因。此外,旱稻297花后光合产物生产能力较低,是限制产量提高的又一原因。展开更多
基金supported by the National Key Research and Development Program of China (2017YFD0101004)the National Natural Science Foundation of China (91435204)the Science and Technology Independent Innovation Ability Upgrading Project of Shanxi Academy of Agricultural Sciences (2017ZZCX-23)
文摘Hexaploid triticale(×Triticosecale,AABBRR)is an important forage crop and a promising energy plant.Transferring D-genome chromosomes or segments from common wheat(Triticum aestivum)into hexaploid triticale is attractive in improving its economically important traits.Here,a hexaploid triticale 6D(6A)substitution line Lin 456 derived from the cross between the octoploid triticale line H400 and the hexaploid wheat Lin 56 was identified and analyzed by genomic in situ hybridization(GISH),fluorescence in situ hybridization(FISH),and molecular markers.The GISH analysis showed that Lin 456 is a hexaploid triticalewith 14 rye(Secale cereale)chromosomes and 28 wheat chromosomes,whereas non-denaturing fluorescence in situ hybridization(ND-FISH)and molecular marker analysis revealed that it is a 6D(6A)substitution line.In contrast to previous studies,the signal of Oligo-pSc119.2 was observed at the distal end of 6DL in Lin 456.The wheat chromosome 6D was associatedwith increased grain weight and decreased spikelet number using the genotypic data combined with the phenotypes of the F2 population in the three environments.The thousand-grain weight and grain width in the substitution individuals were significantly higher than those in the non-substitution individuals in the F2 population across the three environments.We propose that the hexaploid triticale 6D(6A)substitution line Lin 456 can be a valuable and promising donor stock for genetic improvement during triticale breeding.
基金Supported by Sub-project of the 2017 National Key Research and Development Program(2017YFD0100402,2017YFD0100204)Guizhou Science and Technology Major Project[QKHZDZXZ(2012)6005]+2 种基金Program for Research Institutions to Serve Enterprises in Guizhou Province[QKHPTRC(2017)5719]Guizhou Modern Agriculture Technology System(GZCYTX2018-06)Guizhou Science and Technology Major Project(GZCYTX2018-06)
文摘To provide new experimental materials for QTL analysis of rice yield trait, we constructed a mapping population of 150 1ines (recombination inbred lines, R1L) derived from a cross between rice varieties V20B and CPSLO17, and localized QTLs and evaluated the genetic effects in the two parents and 150 RILs for thousand-grain weight trait by using internal mapping method of software MapQTL5 combining thousand-grain weight phenotypic data of the RILs. The results showed that a new QTL (qTGW-3) related to thousand-grain weight trait was detected. Individual QTL (LOD=4.14) explained 11.9% of the observed phenotypic variance. And the QTL alleles came from the parent V20B.
基金supported by the the Central Public-interest Scientific Institution Basal Research Fund,Chinese Academy of Agricultural Sciences(Y2017PT39).
文摘Starch is the most important component in the endosperm, and its synthesis is regulated by multiple transcription factors(TFs) in cereals. However, whether the functions of these TFs are conserved among cereals remains unclear. In this study,we cloned a B3 family TF in wheat, named TaABI19, based on its orthologous sequence in maize(Zea mays L.). Alignment of the DNA and protein sequences showed that ABI19 is conserved in maize and wheat(Triticum aestivum L.). We found that TaABI19 is highly expressed in young spikes and developing grains, and encodes a nucleus-localized transcriptional activator in wheat. The taabi19-b1 null mutants obtained by EMS exhibited a down-regulation of starch synthesis, shorter grain length and lower thousand-grain weight(TGW). Furthermore, we proved that TaABI19 could bind to the promoters of TaPBF homologous genes and enhance their expression. Haplotype association showed that TaABI19-B1 is significantly associated with TGW. We found that Hap2 and Hap3 were favored and had undergone positive selection in China’s wheat breeding programs. Less than 50% of the modern cultivars convey the favored haplotypes, indicating that TaABI19 still can be considered as a target locus for marker-assisted selection breeding to increase TGW in China.
文摘为了进一步挖掘小麦籽粒相关性状的主效QTL位点,探索籽粒性状之间的遗传关系,利用籽粒性状差异较大的小麦品种安农859和武农988构建的124份DH群体为研究材料,分别测定2 a 7个环境下的粒长、粒宽及千粒质量表型值,开展籽粒性状多元回归分析,并基于DH群体的55K芯片数据进行籽粒相关性状QTL检测。结果表明,多元回归分析中,粒宽对千粒质量的贡献最大。通过完备区间作图对籽粒性状进行QTL定位,除6D和7B染色体外,其他19条染色体上共检测到69个有关籽粒性状的QTL,包括24个千粒质量QTL、28个粒长QTL、17个粒宽QTL,单个QTL的表型解释率为6.87%~27.74%。其中,7A染色体上粒长相关的Qgl.ahau-7A.1在7个环境及BLUP下均被检测到,表型解释率为9.48%~22.26%,加性效应为0.11~0.21 mm,物理区间4.91 Mb(AX-110430243~AX-110442528),可能为新的主效QTL。因此,Qgl.ahau-7A.1位点可作为后续精细定位和分子标记辅助育种重点关注的区域。
基金the Natural Science Foundation of Zhejiang Province (Grant No. R306285)Rice Breeding Project of Zhejiang Province (Gant No. 2007C12904) National Natural Science Foundation of China (Grant No. 30623006)
文摘Thousand-grain weight (TGWT) is an important factor affecting grain yield as well as grain quality in rice. A quantitative trait locus (QTL) qTGWT1-1 for TGWT was detected previously near DNA marker RG532 on the short arm of chromosome 1 in a recombinant inbred line (RIL) population derived from the indica-indica rice cross Zhengshan97B (ZS97B)/Milyang46 (MY46). In this study, two residual het-erozygous lines (RHLs), Ch1 and Ch2, derived from the ZS97B/MY46 RIL F7 population, were used to develop two F6 populations, RIL-1 and RIL-2. The genome of Ch1 and Ch2 contains a heterozygous region flanked by RM1―RM3746 and RM151―RM243 on the short arm of chromosome 1, respectively, but is homozygous in other regions. Two tightly linked QTLs, Gw1-1 and Gw1-2, with the same additive direction and similar effect on TGWT, were detected in the region of QTL qTGWT1-1 in population RIL-2. No QTL was detected in the population RIL-1. Four individual RHLs from the population RIL-2 carrying heterozygous segments flanked by RM151―RM10404, RM10381―RM243, RM10435―RM259 and RM10398―RM5359, respectively, were chosen to develop four F2 populations. Ten maternal homozy-gotes and 10 paternal homozygotes were selected from each of the four F2 populations derived from the four RHLs. The four sets of near isogenic lines (NILs) were grown for phenotyping of TGWT and delimitation of Gw1-1 and Gw1-2. Results showed that Gw1-1 and Gw1-2 were located in the intervals RM10376―RM10398 and RM10404―RM1344 which cover 392.9 and 308.5 kb regions, respectively. The enhancing alleles were from ZS97B at both loci, and no significant interactions were detected. Genetic dissection of Gw1-1 and Gw1-2 has laid a foundation for their cloning and molecular breeding of grain yield and quality in rice.
文摘以旱稻297为试验材料,比较了在不施氮肥和150 kg hm^-2的施氮量下旱稻297非结构性碳水化合物的生产能力、运转特点及其与产量构成因子的关系,分析了旱稻297氮肥投入与碳水化合物生产和产量形成间的关系。试验结果表明,开花前储藏的非结构性碳水化合物对产量的贡献率为32%-54%,施氮降低了开花前非结构性碳水化合物对产量的贡献率,相对而言开花后光合产物对产量的贡献率略有提高;开花前非结构性碳水化合物的转移效率为48%-65%,施氮后转移效率略有降低;总体而言,施氮降低了开花前后分配给单个籽粒的非结构性碳水化合物的数量,导致千粒重降低;在一定的范围内,随着开花期叶片中可溶性糖浓度的提高,结实率显著提高,但是随着穗中淀粉浓度的提高,结实率显著降低。因此,施氮后非结构性碳水化合物积累不足和转移效率降低同时限制了千粒重和结实率的提高,而叶片中可溶性糖浓度偏低和穗中淀粉浓度偏高限制了结实率的提高,是限制产量提高的主要原因。此外,旱稻297花后光合产物生产能力较低,是限制产量提高的又一原因。