Supported by MSS images in the mid and late 1970s,TM images in the early 1990s and TM/ETM images in 2004,grassland degradation in the"Three-River Headwaters"region (TRH region)was interpreted through analysis on R...Supported by MSS images in the mid and late 1970s,TM images in the early 1990s and TM/ETM images in 2004,grassland degradation in the"Three-River Headwaters"region (TRH region)was interpreted through analysis on RS images in two time series,then the spatial and temporal characteristics of grassland degradation in the TRH region were analyzed since the 1970s.The results showed that grassland degradation in the TRH region was a continuous change process which had large affected area and long time scale,and rapidly strengthen phenomenon did not exist in the 1990s as a whole.Grassland degradation pattern in the TRH region took shape initially in the mid and late 1970s.Since the 1970s,this degradation process has taken place continuously,obviously characterizing different rules in different regions.In humid and semi-humid meadow region,grassland firstly fragmentized, then vegetation coverage decreased continuously,and finally"black-soil-patch"degraded grassland was formed.But in semi-arid and arid steppe region,the vegetation coverage decreased continuously,and finally desertification was formed.Because grassland degradation had obviously regional differences in the TRH region,it could be regionalized into 7 zones, and each zone had different characteristics in type,grade,scale and time process of grassland degradation.展开更多
This paper attempted to identify fractal and chaotic characteristics of the annual runoff processes in headwaters of the Tarim River.Methods of fractal analyses were used to explore several aspects of the temporal cha...This paper attempted to identify fractal and chaotic characteristics of the annual runoff processes in headwaters of the Tarim River.Methods of fractal analyses were used to explore several aspects of the temporal changes from 1957 to 2002.The main findings are as follows:(1) The annual runoff processes of the three headwaters of the Tarim River are com-plex nonlinear systems with fractal as well as chaotic dynamics.(2) The correlation dimensions of attractor derived from the time series of the annual runoff for the Hotan,Yarkand and Aksu rivers are all greater than 3.0 and non-integral,implying that all three rivers are chaotic dynamical systems that are sensitive to initial conditions,and the dynamic modeling of their annual runoff process requires at least four independent variables.(3) The time series of annual runoff in each river presents a long-term correlation characteristic.The Hurst exponent for the period of 1989 to 2002 suggests that we may expect to see an increasing trend in the annual runoff of the Aksu and Yarkand rivers in the years after 2002,but a decreasing tendency for the Hotan River in the same period.展开更多
Using the Three Rivers Headwaters Area in China as a pilot project, this study has investigated the effectiveness of the ecological compensation policies and practices have implemented in this area over the past decad...Using the Three Rivers Headwaters Area in China as a pilot project, this study has investigated the effectiveness of the ecological compensation policies and practices have implemented in this area over the past decade. Major issues have encountered during the implementation process, including the formidable extent of grassland degradation, the comprehensive nature of measures needed to restore the ecosystem, and the time needed to achieve these goals. These issues are discussed, and remedial measures proposed. They include: drafting regulations giving the Three Rivers Headwaters Area ecological protection, setting aside funds for ecological compensation and establishing a national park, using an ecological assets accounting methodology for financial reporting purposes, designing a science-based approach for conducting the livestock husbandry population migration, enhancing the oversight capacity for all aspects of the ecological compensation process, and making an overall plan to promote the harmonious development of this area together with other regions in Qinghai Province.展开更多
The variation of the vegetation growing season in the Three-Rivers Headwater Region of the Tibetan Plateau has recently become a controversial topic. One issue is that the estimated local trend in the start of the veg...The variation of the vegetation growing season in the Three-Rivers Headwater Region of the Tibetan Plateau has recently become a controversial topic. One issue is that the estimated local trend in the start of the vegetation growing season(SOS)based on remote sensing data is easily affected by outliers because this data series is short. In this study, we determine that the spring minimum temperature is the most influential factor for SOS. The significant negative linear relationship between the two variables in the region is evaluated using Moderate Resolution Imaging Spectroradiometer–Normalized Difference Vegetation Index data for 2000–13. We then reconstruct the SOS time series based on the temperature data for 1960–2013.The regional mean SOS shows an advancing trend of 1.42 d(10 yr)during 1960–2013, with the SOS occurring on the 160th and 151st days in 1960 and 2013, respectively. The advancing trend enhances to 6.04 d(10 yr)during the past 14 years. The spatiotemporal variations of the reconstructed SOS data are similar to those deduced from remote sensing data during the past 14 years. The latter exhibit an even larger regional mean trend of SOS [7.98 d(10 yr)] during 2000–13. The Arctic Oscillation is found to have significantly influenced the changing SOS, especially for the eastern part of the region,during 2000–13.展开更多
Accurate measurements of the associated vegetation phenological dynamics are crucial for understanding the relationship between climate change and terrestrial ecosystems. However, at present, most vegetation phenologi...Accurate measurements of the associated vegetation phenological dynamics are crucial for understanding the relationship between climate change and terrestrial ecosystems. However, at present, most vegetation phenological calculations are based on a single algorithm or method. Because of the spatial, temporal, and ecological complexity of the vegetation growth processes, a single algorithm or method for monitoring all these processes has been indicated to be elusive. Therefore, in this study, from the perspective of plant growth characteristics, we established a method to remotely determine the start of the growth season(SOG) and the end of the growth season(EOG), in which the maximum relative change rate of the normalized difference vegetation index(NDVI) corresponds to the SOG, and the next minimum absolute change rate of the NDVI corresponds to the EOG. Taking the Three-River Headwaters Region in 2000–2013 as an example, we ascertained the spatiotemporal and vertical characteristics of its vegetation phenological changes. Then, in contrast to the actual air temperature data, observed data and other related studies, we found that the SOG and EOG calculated by the proposed method is closer to the time corresponding to the air temperature, and the trends of the SOG and EOG calculated by the proposed method are in good agreement with other relevant studies. Meantime, the error of the SOG between the calculated and observed in this study is smaller than that in other studies.展开更多
[Objective] The aim was to promote nutrient cycling and utilization in the mountain's system combining fruits and poultry and to control non-point source pollution produced from swine raising and navel orange plantin...[Objective] The aim was to promote nutrient cycling and utilization in the mountain's system combining fruits and poultry and to control non-point source pollution produced from swine raising and navel orange planting in headwaters of Dongjiang River. [Method] The quantitative analysis was mainly conducted for the so called "raising by planting" which is about material cycle in "pig-methane-fruit-fish" model and energy cascade utilization, based on relationship between excreted amount by livestock and the utilized quantity in Xinlin Farm in Longtang Town, Dingnan County, Jiangxi Province. [Result] Considering N requirement by fruit trees, a navel orange orchard (1 mu) could support about 2.72 pigs, the equipped biogas pool (1.88 m3) could support 1 166.67 kg of duckweeds and a fish pond could support 25.57 grass carps. In contrast, a satsuma orchard (1 mu) could support about 1.96 pigs, the equipped biogas pool (1.35 m3) could support 841.53 kg duckweeds and the fish pond could support 18.44 grass carps. [Conclusion] The results provided scientific references for quantitative allocation of members in "pig-methane-fruit-fish" model when popularized in headwaters of Dongjiang River.展开更多
Against the background of climate change, alpine permafrost active layers have shown a gradual thickening trend and the hydrothermal conditions have undergone significant changes in the Tianshan Mountains and the Qing...Against the background of climate change, alpine permafrost active layers have shown a gradual thickening trend and the hydrothermal conditions have undergone significant changes in the Tianshan Mountains and the Qinghai-Tibet Plateau, China. At the ice-free cirque basins in the headwaters of the Urumqi River (hereafter referred to as the Ice-Free Cirque) in eastern Tianshan, China, the hydrological effects of the alpine permafrost active layers appear to have also exhibited sig- nificant changes recently. The increasing trend of local precipitation is clear in May and June. The onset of winter and spring snowmelt runoff clearly lags behind increases of air temperature, and the runoff peak appears near the beginning of the melting season, which results in the spring rtmoff increasing. In summer, runoff decreases strongly and the maximum runoff occurs earlier. In our analysis of meteorological and hydrologic data from 1959 to 2010, the runoffand precipitation changes are significantly correlated. In the initial stage of runoff, the runoff-producing process is mainly under the control of the soil water content and soil temperature in the 0-30 cm active layers. Spring precipitation and snowmelt water are mainly involved in the processes of infiltration and evaporation while some melt water infiltrates into the seasonal thawed layer and stays above the frozen layers. During the strong ablation period in summer, the runoff-generating process is mainly controlled by soil water content in the active layers deeper than 60 cm. In the active layer, precipitation and sea- sonal snowmelt water infiltrates, migrates, collects, and then forms runoff.展开更多
Acidic species, such as Nitrate, in polar snow and firn layers are “reversibly” deposited, and are sufficiently volatile to undergo significant post depositional exchange between snow/firn and the atmosphere. Throug...Acidic species, such as Nitrate, in polar snow and firn layers are “reversibly” deposited, and are sufficiently volatile to undergo significant post depositional exchange between snow/firn and the atmosphere. Through comparison of the snowpit and snowpack nitrate concentrations from central East Antarctica and the headwater of rumqi River, we conclude that the nitrate peaks in the uppermost surface snow layers in central Antarctica are not related to an atmospheric signal and must account for post depositional effects. Such effects, however, are not found in the surface snowpack nitrate profiles from the headwater of rumqi River. Two reasons may account for the post depositional difference. At first, nitrate in the polar snow and firn layers appears to be hydrated ion, which can be taken up by the atmosphere, while at the headwater of rumqi River it seems mainly as mineral ion, which assembles the behavior of aerosol derived species that are “irreversibly” deposited and do not undergo significant post depositional exchange with the atmosphere. Secondly, the chemical features of the snow and ice on the Antarctica are mainly determined by wet deposition, to the contrary, dry deposition is more significant at the headwater of rumqi River than that on the East Antarctic Plateau.展开更多
The Chinese people began to research the main source of the Changjiang (Yangtze) River 2,400 years ago. Limited by the scientific level, they did not discover it.The Tuotuo River was determined as the main source of t...The Chinese people began to research the main source of the Changjiang (Yangtze) River 2,400 years ago. Limited by the scientific level, they did not discover it.The Tuotuo River was determined as the main source of the Changjiang River in the 1970s. However, this was not correct, because when comparing the length of the Tuotuo River with the Dam River, the glacier length at the headwaters was added to the Tuotuo River, resulting in that the Tuotuo River is 1 km longer than the Dam River, keeping in mind that the glacier can not be regarded as part of the river.In the summer of 1986, we investigated the source of the Changjiang River, we accurately measured the length of both the Tuotuo and Dam rivers, we discovered that the Dam River was 353.1 km long, and the Tuotuo River was 346.3 km long, the Dam River thus being 6.8 km longer than the Tuotuo River. The discharge of the Dam River is 196.18 m3/ sec., 2.6 times as large as that of the Tuotuo River, that of the Tuotuo River is 75.10 m3/sec. The展开更多
基金CAS Action-plan for West Development,No.KZCX2-XB2-06-03National Key Project of Scientific andTechnical Supporting Programs,No.2006BAC08B00
文摘Supported by MSS images in the mid and late 1970s,TM images in the early 1990s and TM/ETM images in 2004,grassland degradation in the"Three-River Headwaters"region (TRH region)was interpreted through analysis on RS images in two time series,then the spatial and temporal characteristics of grassland degradation in the TRH region were analyzed since the 1970s.The results showed that grassland degradation in the TRH region was a continuous change process which had large affected area and long time scale,and rapidly strengthen phenomenon did not exist in the 1990s as a whole.Grassland degradation pattern in the TRH region took shape initially in the mid and late 1970s.Since the 1970s,this degradation process has taken place continuously,obviously characterizing different rules in different regions.In humid and semi-humid meadow region,grassland firstly fragmentized, then vegetation coverage decreased continuously,and finally"black-soil-patch"degraded grassland was formed.But in semi-arid and arid steppe region,the vegetation coverage decreased continuously,and finally desertification was formed.Because grassland degradation had obviously regional differences in the TRH region,it could be regionalized into 7 zones, and each zone had different characteristics in type,grade,scale and time process of grassland degradation.
基金Knowledge Innovation Project of CAS, No.KZCX2-XB2-03Major Direction of Knowledge Innovation Project of CAS,No.KZCX2-YW-127Shanghai Academic Discipline Project (Human Geography),No.B410
文摘This paper attempted to identify fractal and chaotic characteristics of the annual runoff processes in headwaters of the Tarim River.Methods of fractal analyses were used to explore several aspects of the temporal changes from 1957 to 2002.The main findings are as follows:(1) The annual runoff processes of the three headwaters of the Tarim River are com-plex nonlinear systems with fractal as well as chaotic dynamics.(2) The correlation dimensions of attractor derived from the time series of the annual runoff for the Hotan,Yarkand and Aksu rivers are all greater than 3.0 and non-integral,implying that all three rivers are chaotic dynamical systems that are sensitive to initial conditions,and the dynamic modeling of their annual runoff process requires at least four independent variables.(3) The time series of annual runoff in each river presents a long-term correlation characteristic.The Hurst exponent for the period of 1989 to 2002 suggests that we may expect to see an increasing trend in the annual runoff of the Aksu and Yarkand rivers in the years after 2002,but a decreasing tendency for the Hotan River in the same period.
基金supported by the Natural Science Foundation of China (Grant No. 41301632Key Consulting Foundation of the Chinese Academy of Engineering (Grant No.2012-XZl 13)
文摘Using the Three Rivers Headwaters Area in China as a pilot project, this study has investigated the effectiveness of the ecological compensation policies and practices have implemented in this area over the past decade. Major issues have encountered during the implementation process, including the formidable extent of grassland degradation, the comprehensive nature of measures needed to restore the ecosystem, and the time needed to achieve these goals. These issues are discussed, and remedial measures proposed. They include: drafting regulations giving the Three Rivers Headwaters Area ecological protection, setting aside funds for ecological compensation and establishing a national park, using an ecological assets accounting methodology for financial reporting purposes, designing a science-based approach for conducting the livestock husbandry population migration, enhancing the oversight capacity for all aspects of the ecological compensation process, and making an overall plan to promote the harmonious development of this area together with other regions in Qinghai Province.
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0600400 and 2016YFA0602500)supported by the Open Research Fund of the Key Laboratory of Tibetan Environmental Changes and Land Surface Processes,Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant No.41405082)
文摘The variation of the vegetation growing season in the Three-Rivers Headwater Region of the Tibetan Plateau has recently become a controversial topic. One issue is that the estimated local trend in the start of the vegetation growing season(SOS)based on remote sensing data is easily affected by outliers because this data series is short. In this study, we determine that the spring minimum temperature is the most influential factor for SOS. The significant negative linear relationship between the two variables in the region is evaluated using Moderate Resolution Imaging Spectroradiometer–Normalized Difference Vegetation Index data for 2000–13. We then reconstruct the SOS time series based on the temperature data for 1960–2013.The regional mean SOS shows an advancing trend of 1.42 d(10 yr)during 1960–2013, with the SOS occurring on the 160th and 151st days in 1960 and 2013, respectively. The advancing trend enhances to 6.04 d(10 yr)during the past 14 years. The spatiotemporal variations of the reconstructed SOS data are similar to those deduced from remote sensing data during the past 14 years. The latter exhibit an even larger regional mean trend of SOS [7.98 d(10 yr)] during 2000–13. The Arctic Oscillation is found to have significantly influenced the changing SOS, especially for the eastern part of the region,during 2000–13.
基金supported by National Natural Science Foundation of China (Grant No. 41801099)
文摘Accurate measurements of the associated vegetation phenological dynamics are crucial for understanding the relationship between climate change and terrestrial ecosystems. However, at present, most vegetation phenological calculations are based on a single algorithm or method. Because of the spatial, temporal, and ecological complexity of the vegetation growth processes, a single algorithm or method for monitoring all these processes has been indicated to be elusive. Therefore, in this study, from the perspective of plant growth characteristics, we established a method to remotely determine the start of the growth season(SOG) and the end of the growth season(EOG), in which the maximum relative change rate of the normalized difference vegetation index(NDVI) corresponds to the SOG, and the next minimum absolute change rate of the NDVI corresponds to the EOG. Taking the Three-River Headwaters Region in 2000–2013 as an example, we ascertained the spatiotemporal and vertical characteristics of its vegetation phenological changes. Then, in contrast to the actual air temperature data, observed data and other related studies, we found that the SOG and EOG calculated by the proposed method is closer to the time corresponding to the air temperature, and the trends of the SOG and EOG calculated by the proposed method are in good agreement with other relevant studies. Meantime, the error of the SOG between the calculated and observed in this study is smaller than that in other studies.
基金Supported by "Control and Treatment of Water Pollution" in National Science and Technology Major Project of China (2009ZX07211-001)~~
文摘[Objective] The aim was to promote nutrient cycling and utilization in the mountain's system combining fruits and poultry and to control non-point source pollution produced from swine raising and navel orange planting in headwaters of Dongjiang River. [Method] The quantitative analysis was mainly conducted for the so called "raising by planting" which is about material cycle in "pig-methane-fruit-fish" model and energy cascade utilization, based on relationship between excreted amount by livestock and the utilized quantity in Xinlin Farm in Longtang Town, Dingnan County, Jiangxi Province. [Result] Considering N requirement by fruit trees, a navel orange orchard (1 mu) could support about 2.72 pigs, the equipped biogas pool (1.88 m3) could support 1 166.67 kg of duckweeds and a fish pond could support 25.57 grass carps. In contrast, a satsuma orchard (1 mu) could support about 1.96 pigs, the equipped biogas pool (1.35 m3) could support 841.53 kg duckweeds and the fish pond could support 18.44 grass carps. [Conclusion] The results provided scientific references for quantitative allocation of members in "pig-methane-fruit-fish" model when popularized in headwaters of Dongjiang River.
基金supported by the Natural Science Foundation of China(Nos.41271035 and 41201060)Chinese Academy of Sciences and the National Scientific and Technological Support Projects(KJZD-EW-G03-04,2013BAB05B03)
文摘Against the background of climate change, alpine permafrost active layers have shown a gradual thickening trend and the hydrothermal conditions have undergone significant changes in the Tianshan Mountains and the Qinghai-Tibet Plateau, China. At the ice-free cirque basins in the headwaters of the Urumqi River (hereafter referred to as the Ice-Free Cirque) in eastern Tianshan, China, the hydrological effects of the alpine permafrost active layers appear to have also exhibited sig- nificant changes recently. The increasing trend of local precipitation is clear in May and June. The onset of winter and spring snowmelt runoff clearly lags behind increases of air temperature, and the runoff peak appears near the beginning of the melting season, which results in the spring rtmoff increasing. In summer, runoff decreases strongly and the maximum runoff occurs earlier. In our analysis of meteorological and hydrologic data from 1959 to 2010, the runoffand precipitation changes are significantly correlated. In the initial stage of runoff, the runoff-producing process is mainly under the control of the soil water content and soil temperature in the 0-30 cm active layers. Spring precipitation and snowmelt water are mainly involved in the processes of infiltration and evaporation while some melt water infiltrates into the seasonal thawed layer and stays above the frozen layers. During the strong ablation period in summer, the runoff-generating process is mainly controlled by soil water content in the active layers deeper than 60 cm. In the active layer, precipitation and sea- sonal snowmelt water infiltrates, migrates, collects, and then forms runoff.
文摘Acidic species, such as Nitrate, in polar snow and firn layers are “reversibly” deposited, and are sufficiently volatile to undergo significant post depositional exchange between snow/firn and the atmosphere. Through comparison of the snowpit and snowpack nitrate concentrations from central East Antarctica and the headwater of rumqi River, we conclude that the nitrate peaks in the uppermost surface snow layers in central Antarctica are not related to an atmospheric signal and must account for post depositional effects. Such effects, however, are not found in the surface snowpack nitrate profiles from the headwater of rumqi River. Two reasons may account for the post depositional difference. At first, nitrate in the polar snow and firn layers appears to be hydrated ion, which can be taken up by the atmosphere, while at the headwater of rumqi River it seems mainly as mineral ion, which assembles the behavior of aerosol derived species that are “irreversibly” deposited and do not undergo significant post depositional exchange with the atmosphere. Secondly, the chemical features of the snow and ice on the Antarctica are mainly determined by wet deposition, to the contrary, dry deposition is more significant at the headwater of rumqi River than that on the East Antarctic Plateau.
文摘The Chinese people began to research the main source of the Changjiang (Yangtze) River 2,400 years ago. Limited by the scientific level, they did not discover it.The Tuotuo River was determined as the main source of the Changjiang River in the 1970s. However, this was not correct, because when comparing the length of the Tuotuo River with the Dam River, the glacier length at the headwaters was added to the Tuotuo River, resulting in that the Tuotuo River is 1 km longer than the Dam River, keeping in mind that the glacier can not be regarded as part of the river.In the summer of 1986, we investigated the source of the Changjiang River, we accurately measured the length of both the Tuotuo and Dam rivers, we discovered that the Dam River was 353.1 km long, and the Tuotuo River was 346.3 km long, the Dam River thus being 6.8 km longer than the Tuotuo River. The discharge of the Dam River is 196.18 m3/ sec., 2.6 times as large as that of the Tuotuo River, that of the Tuotuo River is 75.10 m3/sec. The