The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indis...The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indispensable tool for effectively handling problems.However,this method has a conflict between localization accuracy and computational quantity.The equivalent sound speed profile(ESSP)method uses a simple sound speed profile(SSP)instead of the actual complex SSP,which can improve positioning precision but with residual error.The residual error is especially non-negligible in deep water and at large beam incidence angles.By analyzing the residual error of the ESSP method through a simulation,an empirical formula of error is presented.The data collected in the sailing circle mode(large incidence angle)of the South China Sea are used for verification.The experiments show that compared to the ESSP method,the improved algorithm has higher positioning precision and is more efficient than the ray-tracing method.展开更多
In order to obtain the determining method of the installing angle and decrease the performance indices (cutting force and wearing rate) of the pick, the relationships among the installing angles (impact angle, inclina...In order to obtain the determining method of the installing angle and decrease the performance indices (cutting force and wearing rate) of the pick, the relationships among the installing angles (impact angle, inclination angle and the skew angle) were studied, and the static model of installing angles of the pick was built. The relationships among the impact angle, the tip angle of pick and the kinematics parameters of the pick were built, too. Moreover, the mechanic models of the maximum clearance angle and the wearing angle of the pick were set up. To research the relationships of the installing angles and the change law of the wearing angle along with the kinematics parameters, the simulation was done. In order to verify the correctness of the models, the cutting experiments were done by employing two picks with different pick tip angles. The results indicate that, the cutting force is the smallest when the direction of the resultant force of pick follows its axis, and the relationship derived among the installing angles should be satisfied. In addition, to decrease the cutting force and the wearing of the pick, the tip angle of pick should not be larger than the half of the difference between the minimum wearing angle and the impact angle of the pick, and the clearance angle must not be less than zero.展开更多
At a temperature of 23.0 - 24.8℃, the mixed feeding of Japanese anchovy larvae was initiated 24 h before the yolk-sac was exhausted. The point of no return (PNR) was reached on the 6th day after hatching. On the 4t...At a temperature of 23.0 - 24.8℃, the mixed feeding of Japanese anchovy larvae was initiated 24 h before the yolk-sac was exhausted. The point of no return (PNR) was reached on the 6th day after hatching. On the 4th day after hatching, the pectoral angle appeared in both fed and unfed anchovy larvae although it was more evident and sharper in the starved and the PNR stage larvae than in the fed ones. According to observations of larvae collected in the sea, the pectoral angles were evident not only in the larvae of 3.62 - 7.44 mm in standard length, but also in the larvae of 2.70 mm in standard length with remnants of yolk. The pectoral angles became diffuse when the larvae reached 7.84 mm and vanished at 9.86 mm. The pectoral angle cannot be used as a criterion to distinguish healthy from starving larvae.展开更多
Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher pr...Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher properties compared to SSW in both elastic and inelastic zones.It is also concluded that the addition of CFRP(carbon fiber reinforced polymers) enhances the seismic parameters of LSSW(stiffness,energy absorption,shear capacity,over strength values).Also,stress values applied to boundary frames are lower due to post buckling forces.The effect of fiber angle was also studied and presented as a mathematical equation.展开更多
Based on the stress-algebraic model, the turbulent buoyant jet with variable density was studied by the relation between density and concentration. A simple expression for buoyancy coefficient was proposed. The govern...Based on the stress-algebraic model, the turbulent buoyant jet with variable density was studied by the relation between density and concentration. A simple expression for buoyancy coefficient was proposed. The governing equations of turbulent buoyant jet with variable density were closed by introducing the expression of β and the relation between density and concentration. Numerical results for the jet axis with density difference agree well with experimental ones. By finite volume method, the 2 - D vertical jet's flow field with different jet angles was studied. The analysis of the relation among the vortex center, the position of separation point and jet angles shows that the circumfluenee field is the largest when the jet angle is 90°. The area turbulent kinetic energy ka is proposed and the relationship between mixing intensity and jet angles is analyzed based on it. Results show that the jet angle of is the optimum condition for jet water mixing with environment water;and the reduced rate of difference between the centerline density of jet and the density of ambient water is the largest at the jet angle of 90°.展开更多
Failure of irregular rock samples may provide implications in the rapid estimation of rock strength,which is imperative in rock engineering practice.In this work,analytical,experimental and numerical investigations we...Failure of irregular rock samples may provide implications in the rapid estimation of rock strength,which is imperative in rock engineering practice.In this work,analytical,experimental and numerical investigations were carried out to study the mechanical properties and failure characteristics of rock spheres under paired point loads.Analytical solutions indicted that with the increase in sample size(contact angle)and decrease in Poisson’s ratio,the uneven tensile stress in theta direction decreased.Then laboratory experiments were carried out to investigate the load characteristics and failure mode of spherical marble samples with different sizes subjected to a pair of diametral point loads.The discrete element method(DEM)was adopted to study the failure process of rock spheres.The effect of the sphere diameter on the point load contact angle was examined in terms of peak load,crushed zone distribution and energy dissipation.Experimental and numerical results showed that the samples primarily fail in tension,with crushed zones formed at both loading points.With increase in the sample size,the contact angle,crushed area and total work increase.As the specimen diameter increases from 30 mm to 50 mm,the peak load on the specimen increases from 3.6 kN to 8.8 kN,and the percentage of crushed zone(ratio of crushing zone to sample radius,d/r)increased from 0.191 to 0.262.The results of the study have implications for understanding the failure of irregular rock specimens under point loading conditions and their size effects.展开更多
A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of l...A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.展开更多
基金the Natural Science Foundation of Shandong Province of China(No.ZR2022MA051)the China Postdoctoral Science Foundation(No.2020M670891)the SDUST Research Fund(No.2019TDJH103)。
文摘The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indispensable tool for effectively handling problems.However,this method has a conflict between localization accuracy and computational quantity.The equivalent sound speed profile(ESSP)method uses a simple sound speed profile(SSP)instead of the actual complex SSP,which can improve positioning precision but with residual error.The residual error is especially non-negligible in deep water and at large beam incidence angles.By analyzing the residual error of the ESSP method through a simulation,an empirical formula of error is presented.The data collected in the sailing circle mode(large incidence angle)of the South China Sea are used for verification.The experiments show that compared to the ESSP method,the improved algorithm has higher positioning precision and is more efficient than the ray-tracing method.
基金Project(51005232) supported by the National Natural Science Foundation of ChinaProject(20100481176) supported by the China Postdoctoral Science Foundation+1 种基金Project(201104583) supported by the China Postdoctoral Special FundProject(1101106c) supported by Jiangsu Postdoctoral Foundation, China
文摘In order to obtain the determining method of the installing angle and decrease the performance indices (cutting force and wearing rate) of the pick, the relationships among the installing angles (impact angle, inclination angle and the skew angle) were studied, and the static model of installing angles of the pick was built. The relationships among the impact angle, the tip angle of pick and the kinematics parameters of the pick were built, too. Moreover, the mechanic models of the maximum clearance angle and the wearing angle of the pick were set up. To research the relationships of the installing angles and the change law of the wearing angle along with the kinematics parameters, the simulation was done. In order to verify the correctness of the models, the cutting experiments were done by employing two picks with different pick tip angles. The results indicate that, the cutting force is the smallest when the direction of the resultant force of pick follows its axis, and the relationship derived among the installing angles should be satisfied. In addition, to decrease the cutting force and the wearing of the pick, the tip angle of pick should not be larger than the half of the difference between the minimum wearing angle and the impact angle of the pick, and the clearance angle must not be less than zero.
文摘At a temperature of 23.0 - 24.8℃, the mixed feeding of Japanese anchovy larvae was initiated 24 h before the yolk-sac was exhausted. The point of no return (PNR) was reached on the 6th day after hatching. On the 4th day after hatching, the pectoral angle appeared in both fed and unfed anchovy larvae although it was more evident and sharper in the starved and the PNR stage larvae than in the fed ones. According to observations of larvae collected in the sea, the pectoral angles were evident not only in the larvae of 3.62 - 7.44 mm in standard length, but also in the larvae of 2.70 mm in standard length with remnants of yolk. The pectoral angles became diffuse when the larvae reached 7.84 mm and vanished at 9.86 mm. The pectoral angle cannot be used as a criterion to distinguish healthy from starving larvae.
文摘Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher properties compared to SSW in both elastic and inelastic zones.It is also concluded that the addition of CFRP(carbon fiber reinforced polymers) enhances the seismic parameters of LSSW(stiffness,energy absorption,shear capacity,over strength values).Also,stress values applied to boundary frames are lower due to post buckling forces.The effect of fiber angle was also studied and presented as a mathematical equation.
基金the Natural Science Foundation of Liaoning Province(Grant No.20032115)
文摘Based on the stress-algebraic model, the turbulent buoyant jet with variable density was studied by the relation between density and concentration. A simple expression for buoyancy coefficient was proposed. The governing equations of turbulent buoyant jet with variable density were closed by introducing the expression of β and the relation between density and concentration. Numerical results for the jet axis with density difference agree well with experimental ones. By finite volume method, the 2 - D vertical jet's flow field with different jet angles was studied. The analysis of the relation among the vortex center, the position of separation point and jet angles shows that the circumfluenee field is the largest when the jet angle is 90°. The area turbulent kinetic energy ka is proposed and the relationship between mixing intensity and jet angles is analyzed based on it. Results show that the jet angle of is the optimum condition for jet water mixing with environment water;and the reduced rate of difference between the centerline density of jet and the density of ambient water is the largest at the jet angle of 90°.
文摘Failure of irregular rock samples may provide implications in the rapid estimation of rock strength,which is imperative in rock engineering practice.In this work,analytical,experimental and numerical investigations were carried out to study the mechanical properties and failure characteristics of rock spheres under paired point loads.Analytical solutions indicted that with the increase in sample size(contact angle)and decrease in Poisson’s ratio,the uneven tensile stress in theta direction decreased.Then laboratory experiments were carried out to investigate the load characteristics and failure mode of spherical marble samples with different sizes subjected to a pair of diametral point loads.The discrete element method(DEM)was adopted to study the failure process of rock spheres.The effect of the sphere diameter on the point load contact angle was examined in terms of peak load,crushed zone distribution and energy dissipation.Experimental and numerical results showed that the samples primarily fail in tension,with crushed zones formed at both loading points.With increase in the sample size,the contact angle,crushed area and total work increase.As the specimen diameter increases from 30 mm to 50 mm,the peak load on the specimen increases from 3.6 kN to 8.8 kN,and the percentage of crushed zone(ratio of crushing zone to sample radius,d/r)increased from 0.191 to 0.262.The results of the study have implications for understanding the failure of irregular rock specimens under point loading conditions and their size effects.
基金Project(41004011)supported by the National Natural Science Foundation of ChinaProject(2014M550425)supported by the China Postdoctoral Science Foundation
文摘A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.