Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enha...Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enhancing the requests of image quality and stability of the virtual construction scene, taking a tower crane for example. We studied the technology of three-dimensional modeling and optimization of a virtual tower crane, and a method named two-stage model optimization was put forward. This depended on the modeling stage using Solidworks and 3DS Max and the performance optimization stage in EON. The practice of software development indicates that the proposed methods of three-dimensional modeling and optimization could satisfy the performance request of virtual construction system and be popularized to other virtual system.展开更多
An optimal burst height is required for the fly-over and shoot-down smart ammunition with an EFP warhead at the instant of explosion which brings a special requirement to the miss distance of the terminal guidance law...An optimal burst height is required for the fly-over and shoot-down smart ammunition with an EFP warhead at the instant of explosion which brings a special requirement to the miss distance of the terminal guidance law. In this paper, a guidance law based on the virtual target scheme is proposed. First, the practical pursuit-evasion issue between the ammunition and the target with specific miss distance is transformed into a virtuai pursuit-evasion problem with zero miss distance. Secondly, a complete three-dimensional pursuit-evasion kinematics model is established without any simplifications. And then, a suboptimal guidance law is designed based on the θ-D method which has constraints of the elevation and azimuth angular velocity of the virtual line of sight (LOS). Finally, in order to verify the performance of the proposed guidance law, three test cases are conducted. Numericai results show that under the proposed terminal guidance law, the smart ammunition not only can fly above the target with an optimal burst height but also have a smaller normal acceleration on the terminal trajectory.展开更多
Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate ...Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.展开更多
A calculation scheme, which combines a horizontal upwind finite element method with vertical implicit differences, is used to establish a three-dimensional mathematical model of tidal motion and sediment transport in...A calculation scheme, which combines a horizontal upwind finite element method with vertical implicit differences, is used to establish a three-dimensional mathematical model of tidal motion and sediment transport in tidal current. Compared with those of the relative theoretical formula, the results are satisfactory. The model mentioned above has been applied to the water area of the Lianzhou Bay, Guangxi Province. On the basis of the analysis and comparison with the field data, it shows clearly that the model calculation results are reasonable.展开更多
The spatial evolution of vortices and transition to three-dimensionality in the wake of two circular cylinders in tandem arrangement have been numerically studied. An improved virtual body method developed from the vi...The spatial evolution of vortices and transition to three-dimensionality in the wake of two circular cylinders in tandem arrangement have been numerically studied. An improved virtual body method developed from the virtual boundary method is used here. A Reynolds number range between 220 and 270 has been considered, and the spacing between two cylinders is selected as L/D=3 and L/D=3.5. When L/D=3, the secondary vortices of Mode-A are seen to appear at Re=240 and persist over the range of the Reynolds number of 240~270. When L/D=3.5, the similar critical Reynolds number has been found at Re=250. No obvious discontinuity has been found in the Strouhal-Reynolds number relationship, and this is different from three-dimensional flow around a single cylinder at the critical Reynolds number. The spanwise wavelength is about four times the diameter of the cylinder, and it is the characteristic wavelength for Mode-A instability. This paper can give some foremost insight into the three-dimensional instability of flow by complicated geometrical configuration.展开更多
Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the inter...Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.展开更多
3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body...3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.展开更多
For node awakening in wireless multi-sensor networks, an algorithm is put forward for three dimensional tar- get tracking. To monitor target dynamically in three dimensional area by controlling nodes, we constract vir...For node awakening in wireless multi-sensor networks, an algorithm is put forward for three dimensional tar- get tracking. To monitor target dynamically in three dimensional area by controlling nodes, we constract vir- tual force between moving target and the current sense node depending on the virtual potential method, then select the next sense node with information gain function, so that when target randomly move in the specific three dimensional area, the maximum sensing ratio of motion trajectory is get with few nodes. The proposed algorithm is verified from the simulations.展开更多
Only two macroscopic parameters are needed to describe the mechanical properties of linear elastic solids, i.e. the Poisson's ratio and Young's modulus. Correspondingly, there should be two microscopic parameters to...Only two macroscopic parameters are needed to describe the mechanical properties of linear elastic solids, i.e. the Poisson's ratio and Young's modulus. Correspondingly, there should be two microscopic parameters to determine the mechanical properties of material if the macroscopic mechanical properties of linear elastic solids are derived from the microscopic level. Enlightened by this idea, a multiscale mechanical model for material, the virtual multi-dimensional internal bonds (VMIB) model, is proposed by incorporating a shear bond into the virtual internal bond (VIB) model. By this modification, the VMIB model associates the macro mechanical properties of material with the microscopic mechanical properties of discrete structure and the corresponding relationship between micro and macro parameters is derived. The tensor quality of the energy density function, which contains coordinate vector, is mathematically proved. From the point of view of VMIB, the macroscopic nonlinear behaviors of material could be attributed to the evolution of virtual bond distribution density induced by the imposed deformation. With this theoretical hypothesis, as an application example, a uniaxial compressive failure of brittle material is simulated. Good agreement between the experimental results and the simulated ones is found.展开更多
Technological breakthroughs have advanced the temporal and spatial resolutions of diagnostic imaging, and 3 dimensional (3-D) reconstruction techniques have been introduced into everyday clinical practice. Virtual e...Technological breakthroughs have advanced the temporal and spatial resolutions of diagnostic imaging, and 3 dimensional (3-D) reconstruction techniques have been introduced into everyday clinical practice. Virtual endoscopy (VE) is a non-invasive technique that amplifies the perception of cross-sectional images in the 3-D space, providing precise spatial relationships of pathological regions and their surrounding structures. A variety of computer algorithms can be used to generate 3-D images, taking advantage of the information inherent in either spiral computed tomography or magnetic resonance imaging (MRI). VE images enable endoluminal navigation through hollow organs, thus simulating conventional endoscopy. Several clinical studies have validated the diagnostic utility of virtual cystoscopy, which has high sensitivity and specificity rates in the detection of bladder tumor. Published experience in the virtual exploration of the renal pelvis, ureter and urethra is encouraging but still scarce. VE is a safe, non-invasive method that could be applied in the long-term follow-up of patients with ureteropelvic junction obstruction, urinary bladder tumors and ureteral and/or urethral strictures. Its principal limitations are the inability to provide biopsy tissue specimens for histopathologic examination and the associated ionizing radiation hazards (unless MR/is used). However, in the case of endoluminal stenosis or obstruction, VE permits virtual endoluminal navigation both cephalad and caudal to the stenotic segment. To conclude, VE provides a less invasive method of evaluating the urinary tract, especially for clinicians who are less familiar with cross-sectional imaging than radiologists. (Asian J Androl 2006 Jan; 8: 31-38)展开更多
AIM: To present our initial experience regarding the feasibility of ultrasound virtual endoscopy(USVE) and its measurement reliability for polyp detection in an in vitro study using pig intestine specimens.METHODS: Si...AIM: To present our initial experience regarding the feasibility of ultrasound virtual endoscopy(USVE) and its measurement reliability for polyp detection in an in vitro study using pig intestine specimens.METHODS: Six porcine intestine specimens containing 30 synthetic polyps underwent USVE, computed tomography colonography(CTC) and optical colonoscopy(OC) for polyp detection. The polyp measurement defined as the maximum polyp diameter on twodimensional(2D) multiplanar reformatted(MPR) planes was obtained by USVE, and the absolute measurement error was analyzed using the direct measurement as the reference standard.RESULTS: USVE detected 29(96.7%) of 30 polyps, remaining a 7-mm one missed. There was one falsepositive finding. Twenty-six(89.7%) of 29 reconstructedimages were clearly depicted, while 29(96.7%) of 30 polyps were displayed on CTC with one false-negative finding. In OC, all the polyps were detected. The intraclass correlation coefficient was 0.876(95%CI: 0.745-0.940) for measurements obtained with USVE. The pooled absolute measurement errors ± the standard deviations of the depicted polyps with actual sizes ≤ 5 mm, 6-9 mm, and ≥ 10 mm were 1.9 ± 0.8 mm, 0.9 ± 1.2 mm, and 1.0 ± 1.4 mm, respectively.CONCLUSION: USVE is reliable for polyp detection and measurement in in vitro study.展开更多
The pincipl of a 6 DOF (degress of freedom) input device using ultrasonic distance measurement is presented in this paper. The system employs the method of measuring the time of flight. In addition, some techniques, i...The pincipl of a 6 DOF (degress of freedom) input device using ultrasonic distance measurement is presented in this paper. The system employs the method of measuring the time of flight. In addition, some techniques, including automatic gain control, self-adaptive variable threshold and temperature compensation, are also used to improve precision. Then, the positions and orientation of the input device can be calculated by the method of spatial analytic geometry. Meanwhile, commands from the 3-D input device are detected and carried out. The validity and precision of the input device are verified by the experiment in a robot system. The proposed device not only can be used for end effector position and orientation measurement in telerobotics, but also can be an interactive device in virtual reality systems, such as helmet tracking, viewpoint navigation and object manipulation.展开更多
he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D...he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D measurement data. The blocks were modified (cut) on the basis of the simulation result on the ground before erecting them by crane. The re-cutting process was not required and the blocks were erected into a mother ship speedily. Therefore, the erection time is reduced, increasing the dock turnover.展开更多
Research questions. How does a virtual bronchoscopy navigation system (VBNS) improve prediction of candidate bronchus across a range of doctors investigating a range of lesions with Endobronchial ultrasound (EBUS) gui...Research questions. How does a virtual bronchoscopy navigation system (VBNS) improve prediction of candidate bronchus across a range of doctors investigating a range of lesions with Endobronchial ultrasound (EBUS) guide sheath? To what extent do benefits of virtual bronchoscopic pre-procedure navigation apply to experienced versus inexperienced bron- choscopists? Methods: Using archived EBUS Guide sheath cases, a comparison was made between identified candidate 4th order bronchus by Computerised tomography (CT) evaluation versus that identified after virtual path creation. Results: From 7 archived cases, 14 doctors identified the correct bronchus in 94 of 98 assessments (95%). Percentage of cases where there was an improvement in localisation by 2 or more 4th order bronchi was 39.8% overall (28.6% – 51.0%), 26.6 for experienced and 53.1 for inexperienced bronchoscopists (p < 0.02). The absolute mean number of 4th order bronchi different between CT and VBNS was 2.0 ± 2.6 overall, 1.2 (range 0-6) for experienced, and 2.8 (range 0-11) for inexperienced bronchoscopists. Virtual Path software calculation time was 8.1 ± 2.7 minutes, compared to 3.6 ± 2.1 minutes by CT. Conclusion: VBNS allowed rapid accurate assessment with minimal software training. Greatest benefits in reduction of procedure time were obtained in inexperienced bronchoscopists, and VBNS could allow more rapid skill development in EBUS GS in these doctors.展开更多
基金supported by Special Project of Scientific Research of Education Department of Shaanxi Provincial Government under Grant No.11JK0967
文摘Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enhancing the requests of image quality and stability of the virtual construction scene, taking a tower crane for example. We studied the technology of three-dimensional modeling and optimization of a virtual tower crane, and a method named two-stage model optimization was put forward. This depended on the modeling stage using Solidworks and 3DS Max and the performance optimization stage in EON. The practice of software development indicates that the proposed methods of three-dimensional modeling and optimization could satisfy the performance request of virtual construction system and be popularized to other virtual system.
基金Supported by the Fundamental Scientific Research Program of China Ministries and Commissions(B2220132013)
文摘An optimal burst height is required for the fly-over and shoot-down smart ammunition with an EFP warhead at the instant of explosion which brings a special requirement to the miss distance of the terminal guidance law. In this paper, a guidance law based on the virtual target scheme is proposed. First, the practical pursuit-evasion issue between the ammunition and the target with specific miss distance is transformed into a virtuai pursuit-evasion problem with zero miss distance. Secondly, a complete three-dimensional pursuit-evasion kinematics model is established without any simplifications. And then, a suboptimal guidance law is designed based on the θ-D method which has constraints of the elevation and azimuth angular velocity of the virtual line of sight (LOS). Finally, in order to verify the performance of the proposed guidance law, three test cases are conducted. Numericai results show that under the proposed terminal guidance law, the smart ammunition not only can fly above the target with an optimal burst height but also have a smaller normal acceleration on the terminal trajectory.
基金supported by the National Natural Science Foundation of China (10872096)the Open Fund of State Key Laboratory of Explosion Science and Technology, Beijing University of Science and Technology (KFJJ09-13)
文摘Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.
文摘A calculation scheme, which combines a horizontal upwind finite element method with vertical implicit differences, is used to establish a three-dimensional mathematical model of tidal motion and sediment transport in tidal current. Compared with those of the relative theoretical formula, the results are satisfactory. The model mentioned above has been applied to the water area of the Lianzhou Bay, Guangxi Province. On the basis of the analysis and comparison with the field data, it shows clearly that the model calculation results are reasonable.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 10272094)
文摘The spatial evolution of vortices and transition to three-dimensionality in the wake of two circular cylinders in tandem arrangement have been numerically studied. An improved virtual body method developed from the virtual boundary method is used here. A Reynolds number range between 220 and 270 has been considered, and the spacing between two cylinders is selected as L/D=3 and L/D=3.5. When L/D=3, the secondary vortices of Mode-A are seen to appear at Re=240 and persist over the range of the Reynolds number of 240~270. When L/D=3.5, the similar critical Reynolds number has been found at Re=250. No obvious discontinuity has been found in the Strouhal-Reynolds number relationship, and this is different from three-dimensional flow around a single cylinder at the critical Reynolds number. The spanwise wavelength is about four times the diameter of the cylinder, and it is the characteristic wavelength for Mode-A instability. This paper can give some foremost insight into the three-dimensional instability of flow by complicated geometrical configuration.
文摘Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.
基金item of significant subject construction in Shanghai
文摘3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.
文摘For node awakening in wireless multi-sensor networks, an algorithm is put forward for three dimensional tar- get tracking. To monitor target dynamically in three dimensional area by controlling nodes, we constract vir- tual force between moving target and the current sense node depending on the virtual potential method, then select the next sense node with information gain function, so that when target randomly move in the specific three dimensional area, the maximum sensing ratio of motion trajectory is get with few nodes. The proposed algorithm is verified from the simulations.
基金Project supported by the National Basic Research Program of China (973 Project) (No. 2002CB412704).
文摘Only two macroscopic parameters are needed to describe the mechanical properties of linear elastic solids, i.e. the Poisson's ratio and Young's modulus. Correspondingly, there should be two microscopic parameters to determine the mechanical properties of material if the macroscopic mechanical properties of linear elastic solids are derived from the microscopic level. Enlightened by this idea, a multiscale mechanical model for material, the virtual multi-dimensional internal bonds (VMIB) model, is proposed by incorporating a shear bond into the virtual internal bond (VIB) model. By this modification, the VMIB model associates the macro mechanical properties of material with the microscopic mechanical properties of discrete structure and the corresponding relationship between micro and macro parameters is derived. The tensor quality of the energy density function, which contains coordinate vector, is mathematically proved. From the point of view of VMIB, the macroscopic nonlinear behaviors of material could be attributed to the evolution of virtual bond distribution density induced by the imposed deformation. With this theoretical hypothesis, as an application example, a uniaxial compressive failure of brittle material is simulated. Good agreement between the experimental results and the simulated ones is found.
文摘Technological breakthroughs have advanced the temporal and spatial resolutions of diagnostic imaging, and 3 dimensional (3-D) reconstruction techniques have been introduced into everyday clinical practice. Virtual endoscopy (VE) is a non-invasive technique that amplifies the perception of cross-sectional images in the 3-D space, providing precise spatial relationships of pathological regions and their surrounding structures. A variety of computer algorithms can be used to generate 3-D images, taking advantage of the information inherent in either spiral computed tomography or magnetic resonance imaging (MRI). VE images enable endoluminal navigation through hollow organs, thus simulating conventional endoscopy. Several clinical studies have validated the diagnostic utility of virtual cystoscopy, which has high sensitivity and specificity rates in the detection of bladder tumor. Published experience in the virtual exploration of the renal pelvis, ureter and urethra is encouraging but still scarce. VE is a safe, non-invasive method that could be applied in the long-term follow-up of patients with ureteropelvic junction obstruction, urinary bladder tumors and ureteral and/or urethral strictures. Its principal limitations are the inability to provide biopsy tissue specimens for histopathologic examination and the associated ionizing radiation hazards (unless MR/is used). However, in the case of endoluminal stenosis or obstruction, VE permits virtual endoluminal navigation both cephalad and caudal to the stenotic segment. To conclude, VE provides a less invasive method of evaluating the urinary tract, especially for clinicians who are less familiar with cross-sectional imaging than radiologists. (Asian J Androl 2006 Jan; 8: 31-38)
基金Supported by The National Natural Science Foundation of China,No.81271576
文摘AIM: To present our initial experience regarding the feasibility of ultrasound virtual endoscopy(USVE) and its measurement reliability for polyp detection in an in vitro study using pig intestine specimens.METHODS: Six porcine intestine specimens containing 30 synthetic polyps underwent USVE, computed tomography colonography(CTC) and optical colonoscopy(OC) for polyp detection. The polyp measurement defined as the maximum polyp diameter on twodimensional(2D) multiplanar reformatted(MPR) planes was obtained by USVE, and the absolute measurement error was analyzed using the direct measurement as the reference standard.RESULTS: USVE detected 29(96.7%) of 30 polyps, remaining a 7-mm one missed. There was one falsepositive finding. Twenty-six(89.7%) of 29 reconstructedimages were clearly depicted, while 29(96.7%) of 30 polyps were displayed on CTC with one false-negative finding. In OC, all the polyps were detected. The intraclass correlation coefficient was 0.876(95%CI: 0.745-0.940) for measurements obtained with USVE. The pooled absolute measurement errors ± the standard deviations of the depicted polyps with actual sizes ≤ 5 mm, 6-9 mm, and ≥ 10 mm were 1.9 ± 0.8 mm, 0.9 ± 1.2 mm, and 1.0 ± 1.4 mm, respectively.CONCLUSION: USVE is reliable for polyp detection and measurement in in vitro study.
文摘The pincipl of a 6 DOF (degress of freedom) input device using ultrasonic distance measurement is presented in this paper. The system employs the method of measuring the time of flight. In addition, some techniques, including automatic gain control, self-adaptive variable threshold and temperature compensation, are also used to improve precision. Then, the positions and orientation of the input device can be calculated by the method of spatial analytic geometry. Meanwhile, commands from the 3-D input device are detected and carried out. The validity and precision of the input device are verified by the experiment in a robot system. The proposed device not only can be used for end effector position and orientation measurement in telerobotics, but also can be an interactive device in virtual reality systems, such as helmet tracking, viewpoint navigation and object manipulation.
基金supported by the Korea Institute of Marine Science & Technology promotion (KIMST)
文摘he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D measurement data. The blocks were modified (cut) on the basis of the simulation result on the ground before erecting them by crane. The re-cutting process was not required and the blocks were erected into a mother ship speedily. Therefore, the erection time is reduced, increasing the dock turnover.
文摘Research questions. How does a virtual bronchoscopy navigation system (VBNS) improve prediction of candidate bronchus across a range of doctors investigating a range of lesions with Endobronchial ultrasound (EBUS) guide sheath? To what extent do benefits of virtual bronchoscopic pre-procedure navigation apply to experienced versus inexperienced bron- choscopists? Methods: Using archived EBUS Guide sheath cases, a comparison was made between identified candidate 4th order bronchus by Computerised tomography (CT) evaluation versus that identified after virtual path creation. Results: From 7 archived cases, 14 doctors identified the correct bronchus in 94 of 98 assessments (95%). Percentage of cases where there was an improvement in localisation by 2 or more 4th order bronchi was 39.8% overall (28.6% – 51.0%), 26.6 for experienced and 53.1 for inexperienced bronchoscopists (p < 0.02). The absolute mean number of 4th order bronchi different between CT and VBNS was 2.0 ± 2.6 overall, 1.2 (range 0-6) for experienced, and 2.8 (range 0-11) for inexperienced bronchoscopists. Virtual Path software calculation time was 8.1 ± 2.7 minutes, compared to 3.6 ± 2.1 minutes by CT. Conclusion: VBNS allowed rapid accurate assessment with minimal software training. Greatest benefits in reduction of procedure time were obtained in inexperienced bronchoscopists, and VBNS could allow more rapid skill development in EBUS GS in these doctors.