期刊文献+
共找到726篇文章
< 1 2 37 >
每页显示 20 50 100
Computational fluid dynamics-discrete element method simulation of stirred tank reactor for graphene production 被引量:1
1
作者 Shuaishuai Zhou Jing Li +5 位作者 Kaixiang Pang Chunxi Lu Feng Zhu Congzhen Qiao Yajie Tian Jingwei Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期196-207,共12页
Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the productio... Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the production efficiency.In this paper,these interactions were revealed by computational fluid dynamics–discrete element method(CFD-DEM)method.Based on simulation results,both liquid phase flow hydrodynamics and particle motion behavior have been analyzed,which gave the general information of the multiphase flow behavior inside the stirred tank reactor as to graphene production.By calculating the threshold at the beginning of graphite exfoliation process,the shear force from the slip velocity was determined as the active force.These results can support the optimization of the graphene production process. 展开更多
关键词 computational fluid dynamics Discrete element method Stirred tank LPE process Liquid-particle interactions
下载PDF
Three-dimensional Computational Fluid Dynamics Modeling of Two-phase Flow in a Structured Packing Column 被引量:4
2
作者 张小斌 姚蕾 +1 位作者 邱利民 张学军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第9期959-966,共8页
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed... Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations. 展开更多
关键词 structured packing column two-phase flow computational fluid dynamics three-dimension
下载PDF
Review:Recent Development of High⁃Order⁃Spectral Method Combined with Computational Fluid Dynamics Method for Wave⁃Structure Interactions 被引量:1
3
作者 Yuan Zhuang Decheng Wan 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第3期170-188,共19页
The present paper reviews the recent developments of a high⁃order⁃spectral method(HOS)and the combination with computational fluid dynamics(CFD)method for wave⁃structure interactions.As the numerical simulations of wa... The present paper reviews the recent developments of a high⁃order⁃spectral method(HOS)and the combination with computational fluid dynamics(CFD)method for wave⁃structure interactions.As the numerical simulations of wave⁃structure interaction require efficiency and accuracy,as well as the ability in calculating in open sea states,the HOS method has its strength in both generating extreme waves in open seas and fast convergence in simulations,while computational fluid dynamics(CFD)method has its advantages in simulating violent wave⁃structure interactions.This paper provides the new thoughts for fast and accurate simulations,as well as the future work on innovations in fine fluid field of numerical simulations. 展开更多
关键词 potential⁃viscous flow high⁃order⁃spectral(HOS)method computational fluid dynamics(CFD)method
下载PDF
Computational Fluid Dynamics(CFD) Analysis and Optimization of Reconstructed Intake System of Cylinder Head Based on Slicing Reverse Method
4
作者 LUO Tong LIAN Zhanghua +1 位作者 CHEN Guihui ZHANG Qiang 《Journal of Donghua University(English Edition)》 EI CAS 2019年第2期170-178,共9页
To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system base... To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system based on slicing reverse method was proposed.The flow characteristics were found out through CFD,and the velocity vector field,pressure field and turbulent kinetic energy field for different valve lifts were discussed,which were in good agreement with experimental data,and the quality of reconstruction was evaluated.In order to improve its flow characteristic,an optimization plan was proposed.The results show that the flow characteristics after optimization are obviously improved.The results can provide a reference for the design and optimization of the intake system of cylinder head. 展开更多
关键词 computational fluid dynamics(CFD)analysis CFD optimization INTAKE system SLICING REVERSE method
下载PDF
Analysis of Temperature Rise in High-Speed Permanent Magnet Synchronous Traction Motors by Coupling the Equivalent Thermal Circuit Method and Computational Fluid Dynamics
5
作者 Jungang Jia 《Fluid Dynamics & Materials Processing》 EI 2020年第5期919-933,共15页
To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the ... To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors. 展开更多
关键词 Thermal circuit method computational fluid dynamics high-speed permanent magnet synchronous traction motor rotor temperature rise stator temperature rise
下载PDF
Computational fluid dynamics simulations of respiratory airflow in human nasal cavity and its characteristic dimension study 被引量:3
6
作者 Jun Zhang Yingxi Liu +2 位作者 Xiuzhen Sun Shen Yu Chi Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第2期223-228,共6页
To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models... To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models were recons- tructed based on processed tomography images collected from normal people. The airflow fields in nasal cavities were simulated by fluid dynamics with finite element software ANSYS. The results showed that the difference of human nasal cavity structure led to different airflow distribution in the nasal cavities and variation of the main airstream passing through the common nasal meatus. The nasal resistance in the regions of nasal valve and nasal vestibule accounted for more than half of the overall resistance. The characteristic model of nasal cavity was extracted on the basis of characteristic points and dimensions deduced from the original models. It showed that either the geometric structure or the airflow field of the two kinds of models was similar. The characteristic dimensions were the characteristic parameters of nasal cavity that could properly represent the original model in model studies on nasal cavity. 展开更多
关键词 Nasal cavity Characteristic dimension three-dimensional reconstruction Numerical simulation of flowfield computational fluid dynamic Finite element method
下载PDF
Numerical Study on the Aerodynamic and Fluid−Structure Interaction of An NREL-5MW Wind Turbine
7
作者 ZHAO Mi YU Wan-li +2 位作者 WANG Pi-guang QU Yang DU Xiu-li 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期363-378,共16页
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ... A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model. 展开更多
关键词 computational fluid dynamics methods(CFD) tower shadow effect aerodynamic performance fluidstructure interaction space flow field
下载PDF
Three-Dimensional Water-Quality Simulation for River Based on VOF Method 被引量:1
8
作者 Ao Xuefei Wang Xiaoling +2 位作者 Song Mingrui Deng Shaohui Li Songmin 《Transactions of Tianjin University》 EI CAS 2016年第5期426-433,共8页
In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method wit... In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method with the k-ε turbulence mathematical model. Then, the water hydrodynamic characteristics and transport processes for BOD_5, NH_(3^-)N and TP were analyzed. The results showed that the water surface of convex bank was a little lower than that of concave bank due to the centrifugal force near the bend, and most concentrations were inferior to the type Ⅴ standard indexes of surface water environmental quality. The model validation indicated that the errors between the simulated and monitored values were comparatively small, satisfying the application demands and providing scientific basis and decision support for the restoration and protection of water quality. 展开更多
关键词 three-dimensional WATER QUALITY MODEL volume of fluid method k-ε turbulence mathematical MODEL RIVER WATER QUALITY computational fluid dynamics
下载PDF
Numerical simulations and comparative analysis of two- and three-dimensional circulating fluidized bed reactors for CO2 capture 被引量:1
9
作者 Yefeng Zhou Yifan Han +7 位作者 Yujian Lu Hongcun Bai Xiayi Hu Xincheng Zhang Fanghua Xie Xiao Luo Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第12期2955-2967,共13页
Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.... Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.The numerical simulation by computational fluid dynamics(CFD)is believed as a promising tool to study CO2 adsorption process in CFBR.Although three-dimensional(3D)simulations were proved to have better predicting performance with the experimental results,two-dimensional(2D)simulations have been widely reported for qualitative and quantitative studies on gas-solid behavior in CFBR for its higher computational efficiency recently.However,the discrepancies between 2D and 3D simulations have rarely been evaluated by detailed study.Considering that the differences between the 2D and 3D simulations will vary substantially with the changes of independent operating conditions,it is beneficial to lower computational costs to clarify the effects of dimensionality on the numerical CO2 adsorption runs under various operating conditions.In this work,the comparative analysis for CO2 adsorption in 2D and 3D simulations was conducted to enlighten the effects of dimensionality on the hydrodynamics and reaction behaviors,in which the separation rate,species distribution and hydrodynamic characteristics were comparatively studied for both model frames.With both accuracy and computational costs considered,the viable suggestions were provided in selecting appropriate model frame for the studies on optimization of operating conditions,which directly affect the capture and energy efficiencies of cyclic CO2 capture process in CFBR. 展开更多
关键词 Two-and three-dimensional simulations Circulating fluidized bed reactor Carbon dioxide adsorption computational fluid dynamics Operating conditions
下载PDF
A COMPUTATIONAL METHOD FOR THE NAVIER-STOKES EQUATIONS AT ALL SPEEDS
10
作者 赵兴艳 苏莫明 苗永淼 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第4期479-486,共8页
A PLU-SGS method based on a time-derivative preconditioning algorithm and LU-SGS method is developed in order to calculate the Navier-Stokes equations at all speeds. The equations were discretized using A USMPW scheme... A PLU-SGS method based on a time-derivative preconditioning algorithm and LU-SGS method is developed in order to calculate the Navier-Stokes equations at all speeds. The equations were discretized using A USMPW scheme in conjunction with the third-order MUSCL scheme with Van Leer limiter. The present method was applied to solve the multidimensional compressible Navier-Stokes equations in curvilinear coordinates. Characteristic boundary conditions based on the eigensystem of the preconditioned equations were employed. In order to examine the performance of present method, driven-cavity flow at various Reynolds numbers and viscous flow through a convergent-divergent nozzle at supersonic were selected to rest this method. The computed results were compared with the experimental data or the other numerical results available in literature and good agreements between them are obtained. The results show that the present method is accurate, self-adaptive and stable for a wide range of flow conditions from low speed to supersonic flows. 展开更多
关键词 nonlinear hyperbolic system computational fluid dynamic preconditioning algorithm implicit time marching method characteristic boundary condition high-order-accuracy
下载PDF
Numerical Solutions of the Classical and Modified Buckley-Leverett Equations Applied to Two-Phase Fluid Flow
11
作者 Raphael de O. Garcia Graciele P. Silveira 《Open Journal of Fluid Dynamics》 2024年第3期184-204,共21页
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t... Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement. 展开更多
关键词 computational fluid dynamics Buckley-Leverett Equation Numerical methods Two-phase fluid Flow
下载PDF
CVBEM and FVM Computational Model Comparison for Solving Ideal Fluid Flow in a 90-Degree Bend
12
作者 Colin Bloor Theodore V. Hromadka II +1 位作者 Bryce Wilkins Howard McInvale 《Open Journal of Fluid Dynamics》 2016年第4期430-437,共9页
While finite volume methodologies (FVM) have predominated in fluid flow computations, many flow problems, including groundwater models, would benefit from the use of boundary methods, such as the Complex Variable Boun... While finite volume methodologies (FVM) have predominated in fluid flow computations, many flow problems, including groundwater models, would benefit from the use of boundary methods, such as the Complex Variable Boundary Element Method (CVBEM). However, to date, there has been no reporting of a comparison of computational results between the FVM and the CVBEM in the assessment of flow field characteristics. In this work, the CVBEM is used to develop a flow field vector outcome of ideal fluid flow in a 90-degree bend which is then compared to the computational results from a finite volume model of the same situation. The focus of the modelling comparison in the current work is flow field trajectory vectors of the fluid flow, with respect to vector magnitude and direction. Such a comparison is necessary to validate the development of flow field vectors from the CVBEM and is of interest to many engineering flow problems, specifically groundwater modelling. Comparison of the CVBEM and FVM flow field trajectory vectors for the target problem of ideal flow in a 90-degree bend shows good agreement between the considered methodologies. 展开更多
关键词 Complex Variable Boundary Element method Finite Volume method Ideal fluid Flow 90-Degree Bend computational fluid dynamics
下载PDF
A computational particle fluid-dynamics simulation of hydrodynamics in a three-dimensional full-loop circulating fluidized bed: Effects of particle-size distribution 被引量:6
13
作者 Hang Zhang Youjun Lu 《Particuology》 SCIE EI CAS CSCD 2020年第2期134-145,共12页
A computational particle fluid-dynamics model coupled with an energy-minimization multi-scale(EMMS)drag model was applied to investigate the influence of particle-size distribution on the hydrodynamics of a three-dime... A computational particle fluid-dynamics model coupled with an energy-minimization multi-scale(EMMS)drag model was applied to investigate the influence of particle-size distribution on the hydrodynamics of a three-dimensional full-loop circulating fluidized bed.Different particle systems,including one monodisperse and two polydisperse cases,were investigated.The numerical model was validated by comparing its results with the experimental axial voidage distribution and solid mass flux.The EMMS drag model had a high accuracy in the computational particle fluid-dynamics simulation of the three-dimensional full-loop circulating fluidized bed.The total number of parcels in the system(Np)influenced the axial voidage distribution in the riser,especially at the lower part of the riser.Additional numerical simulation results showed that axial segregation by size was predicted in the two polydisperse cases and the segregation size increased with an increase in the number of size classes.The axial voidage distribution at the lower portion of the riser was significantly influenced by particle-size distribution.However,radial segregation could only be correctly predicted in the upper region of the riser in the polydisperse case of three solid species. 展开更多
关键词 Circulating fluidized bed computational particle fluid dynamics Particle-size distribution Energy-minimization multiscale model three-dimensional full-loop simulation
原文传递
Granular collapse in fluids:Dynamics and flow regime identification
14
作者 Hu Tang Bisong Lin Dengming Wang 《Particuology》 SCIE EI CAS CSCD 2024年第9期30-41,共12页
The collapse of granular material in fluids is a prevalent phenomenon in both natural and industrial processes,displaying a notable sensitivity to initial configuration of the system.This study is specifically oriente... The collapse of granular material in fluids is a prevalent phenomenon in both natural and industrial processes,displaying a notable sensitivity to initial configuration of the system.This study is specifically oriented towards falling process of collapsing material under various fluid conditions,employing the computational fluid dynamics-discrete element method(CFD-DEM)to primarily investigate the dynamics and scaling laws of deposit morphology of collapsed material.Through a comprehensive analysis of particle sedimentation in fluids,we introduce a refined inertial characteristic time for granular collapse within the inertial regime.Subsequently,we propose modifications to conventional fluid-particle density ratio and Reynolds number,aiming to enhance the accuracy of depicting collapse dynamics and identifying flow regimes across diverse column heights and fluid conditions.Finally,we construct a phase diagram of flow regimes using modified dimensionless numbers,emphasizing the role of column height in transition between viscous and inertial regimes.These parameters demonstrate enhanced relevance in governing the collapse of immersed granular columns,thereby contributing to a more nuanced understanding of fluid-particle interations in dense granular flows under different regimes. 展开更多
关键词 Immersed granular material COLLAPSE dynamIC Flow regime computational fluid dynamics-discrete element method
原文传递
Generation of Dynamic Grids and Computation of Unsteady Transonic Flows around Assemblies 被引量:6
15
作者 陆志良 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2001年第1期1-5,共5页
Algebraic methods and rapid deforming techniques are used to generate three-dimensional boundary-fitted dynamic grids for assemblies. The conservative full-potential equation is solved by a time-accurate approximate f... Algebraic methods and rapid deforming techniques are used to generate three-dimensional boundary-fitted dynamic grids for assemblies. The conservative full-potential equation is solved by a time-accurate approximate factorization algorithm and internal Newton iterations. An integral boundary layer method based on the dissipation integral is used to account for viscous effects. The computational results about unsteady transonic forces on wings, bodies and control surfaces are in agreement with experimental data. 展开更多
关键词 ALGEBRA Algorithms Approximation theory Boundary layer flow computational fluid dynamics Integral equations Iterative methods Newtonian flow Transonic flow Unsteady flow Viscous flow WINGS
下载PDF
Water medium retarders for heavy-duty vehicles:Computational fluid dynamics and experimental analysis of filling ratio control method 被引量:2
16
作者 郑宏鹏 雷雨龙 宋鹏翔 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第6期1067-1075,共9页
The water medium(WM) retarder is an auxiliary braking device that could convert the kinetic energy of the vehicle to the thermal energy of the coolant, and it is used instead of the service brake under non-emergency... The water medium(WM) retarder is an auxiliary braking device that could convert the kinetic energy of the vehicle to the thermal energy of the coolant, and it is used instead of the service brake under non-emergency braking conditions. This paper analyzes the flow distribution based on a mathematical model and analyzes the key factors that could affect the filling ratio and the braking torque of the WM retarder. Computational fluid dynamics(CFD) simulations are conducted to compute the braking torque, and theresults are verified by experiments. It is shown that the filling ratio and the braking torque can be expressed by the mathematical model proposed in this paper. Compared with the Reynolds averaged Navier-Stokes(RANS) turbulent model, the shear stress transport(SST) turbulent model can more accurately simulate the braking torque. Finally, the flow distribution and the flow character in the WM retarders are analyzed. 展开更多
关键词 Heavy duty vehicle braking system water medium retarder computational fluid dynamics filling ratio control method
原文传递
Analysis of gas-solid flow and shaft-injected gas distribution in an oxygen blast furnace using a discrete element method and computational fluid dynamics coupled model 被引量:3
17
作者 Zeshang Dong Jingsong Wang +2 位作者 Haibin Zuo Xuefeng She Qingguo Xue 《Particuology》 SCIE EI CAS CSCD 2017年第3期63-72,共10页
lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace b... lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center. 展开更多
关键词 Oxygen blast furnace Discrete element method computational fluid dynamics Shaft gas injection Gas-solid flow Pressure field
原文传递
My Way: A Computational Autobiography 被引量:1
18
作者 Philip Roe 《Communications on Applied Mathematics and Computation》 2020年第3期321-340,共20页
In this paper,the author recounts his forty-year plus struggle to find a sound basis for understanding the computational fluid dynamics of compressible flow.
关键词 Compressible flow computational fluid dynamics Characteristic theory Conservation laws Multidimensional methods
下载PDF
Highly-Efficient Aerodynamic Optimal Design of Rotor Airfoil Using Viscous Adjoint Method
19
作者 Wu Qi Zhao Qijun Wang Qing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第2期134-142,共9页
In order to overcome the efficiency problem of the conventional gradient-based optimal design method,a highly-efficient viscous adjoint-based RANS equations method is applied to the aerodynamic optimal design of hover... In order to overcome the efficiency problem of the conventional gradient-based optimal design method,a highly-efficient viscous adjoint-based RANS equations method is applied to the aerodynamic optimal design of hovering rotor airfoil.The C-shaped body-fitted mesh is firstly automatically generated around the airfoil by solving the Poisson equations,and the Navier-Stokes(N-S)equations combined with Spalart-Allmaras(S-A)one-equation turbulence model are used as the governing equations to acquire the reliable flowfield variables.Then,according to multi-constrained characteristics of the optimization of high lift/drag ratio for hovering rotor airfoil,its corresponding adjoint equations,boundary conditions and gradient expressions are newly derived.On these bases,two representative rotor airfoils,NACA0012 airfoil and SC1095 airfoil,are selected as numerical examples to optimize their synthesized aerodynamic characteristics about lift/drag ratio in hover,and better aerodynamic performance of optimal airfoils are obtained compared with the baseline.Furthermore,the new designed rotor with the optimized rotor airfoil has better hover aerodynamic characteristics compared with the baseline rotor.In contrast to the baseline airfoils optimized by the finite difference method,it is demonstrated that the adjoint optimal algorithm itself is practical and highly-efficient for the aerodynamic optimization of hover rotor airfoil. 展开更多
关键词 rotor airfoil viscous adjoint method aerodynamic characteristics MULTI-CONSTRAINTS computational fluid dynamics(CFD) highly efficiency
下载PDF
基于CFD-DEM耦合的梯级溜槽的设计与分析
20
作者 孙晓霞 胡枫 孟文俊 《中国工程机械学报》 北大核心 2024年第5期652-656,661,共6页
针对传统物料转运过程中溜槽和输送带磨损严重、出口处粉尘浓度过高的问题,建立含臂架的梯级溜槽几何模型,采用基于计算流体力学与离散单元法(CFD-DEM)耦合的数值模拟方法,分析了臂架对转运溜槽的磨损以及对其出口处粉尘排放浓度的影响... 针对传统物料转运过程中溜槽和输送带磨损严重、出口处粉尘浓度过高的问题,建立含臂架的梯级溜槽几何模型,采用基于计算流体力学与离散单元法(CFD-DEM)耦合的数值模拟方法,分析了臂架对转运溜槽的磨损以及对其出口处粉尘排放浓度的影响。仿真结果表明:含臂架的梯级溜槽可以有效控制物料流的速度和方向,降低对溜槽内表面的冲击磨损,降低出口处的粉尘量。 展开更多
关键词 转运溜槽 计算流体力学与离散单元法(CFD-DEM)耦合 粉尘
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部