期刊文献+
共找到1,289篇文章
< 1 2 65 >
每页显示 20 50 100
Integration system research and development for three-dimensional laser scanning information visualization in goaf 被引量:1
1
作者 罗周全 黄俊杰 +2 位作者 罗贞焱 汪伟 秦亚光 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1985-1994,共10页
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo... An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable. 展开更多
关键词 GOAF laser scanning visualization integration system 1 Introduction The goaf formed through underground mining of mineral resources is one of the main disaster sources threatening mine safety production [1 2]. Effective implementation of goaf detection and accurate acquisition of its spatial characteristics including the three-dimensional morphology the spatial position as well as the actual boundary and volume are important basis to analyze predict and control disasters caused by goaf. In recent years three-dimensional laser scanning technology has been effectively applied in goaf detection [3 4]. Large quantities of point cloud data that are acquired for goaf by means of the three-dimensional laser scanning system are processed relying on relevant engineering software to generate a three-dimensional model for goaf. Then a general modeling analysis and processing instrument are introduced to perform subsequent three-dimensional analysis and calculation [5 6]. Moreover related development is also carried out in fields such as three-dimensional detection and visualization of hazardous goaf detection and analysis of unstable failures in goaf extraction boundary acquisition in stope visualized computation of damage index aided design for pillar recovery and three-dimensional detection
下载PDF
Application of Three-Dimensional Laser Scanning and Surveying in Geological Investigation of High Rock Slope 被引量:15
2
作者 黄润秋 董秀军 《Journal of China University of Geosciences》 SCIE CAS CSCD 2008年第2期184-190,共7页
The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions a... The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions and 3D measurements, owing to its prominent characteristics of the high efficiency and high precision. At present its application is still in the initial state, and it is quite rarely used in China, especially in geotechnical engineering and geological engineering fields. Starting with a general introduction of 3D laser scanning technology, this article studies how to apply the technology to high rock slope investigations. By way of a case study, principles and methods of quick slope documentation and occurrence measurement of discontinuities are discussed and analyzed. Analysis results show that the application of 3D laser scanning technology to geotechnical and geological engineering has a great prospect and value. 展开更多
关键词 3D laser scanning system point cloud high steep slope rock mass structure quick documentation.
下载PDF
Estimating wood quality attributes from dense airborne LiDAR point clouds
3
作者 Nicolas Cattaneo Stefano Puliti +1 位作者 Carolin Fischer Rasmus Astrup 《Forest Ecosystems》 SCIE CSCD 2024年第2期226-235,共10页
Mapping individual tree quality parameters from high-density LiDAR point clouds is an important step towards improved forest inventories.We present a novel machine learning-based workflow that uses individual tree poi... Mapping individual tree quality parameters from high-density LiDAR point clouds is an important step towards improved forest inventories.We present a novel machine learning-based workflow that uses individual tree point clouds from drone laser scanning to predict wood quality indicators in standing trees.Unlike object reconstruction methods,our approach is based on simple metrics computed on vertical slices that summarize information on point distances,angles,and geometric attributes of the space between and around the points.Our models use these slice metrics as predictors and achieve high accuracy for predicting the diameter of the largest branch per log (DLBs) and stem diameter at different heights (DS) from survey-grade drone laser scans.We show that our models are also robust and accurate when tested on suboptimal versions of the data generated by reductions in the number of points or emulations of suboptimal single-tree segmentation scenarios.Our approach provides a simple,clear,and scalable solution that can be adapted to different situations both for research and more operational mapping. 展开更多
关键词 UAV laser scanning Wood quality Machine learning point cloud metrics
下载PDF
Building Facade Point Clouds Segmentation Based on Optimal Dual-Scale Feature Descriptors
4
作者 Zijian Zhang Jicang Wu 《Journal of Computer and Communications》 2024年第6期226-245,共20页
To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-sca... To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings. 展开更多
关键词 3D laser scanning point clouds Building Facade Segmentation point cloud Processing Feature Descriptors
下载PDF
Study on the LAI Single Tree Model Based on Terrestrial Laser Scanning
5
作者 Zhaohua Pan Genshen Fu 《Open Journal of Geology》 CAS 2023年第5期431-448,共18页
Leaf area index (LAI) is a key parameter for studying global terrestrial ecology and environment and has great ecological significance. How to accurately measure and calculate structural parameters of trees has become... Leaf area index (LAI) is a key parameter for studying global terrestrial ecology and environment and has great ecological significance. How to accurately measure and calculate structural parameters of trees has become an urgent matter. This paper reports the use of terrestrial laser scanning (TLS) as a measurement tool to achieve accurate LAI estimation through point cloud preprocessing measures, the LeWos algorithm, and voxel methods. The accuracy and feasibility of this indirect measurement method were explored. It is found that the single wood structure parameters extracted from TLS have a good linear relationship with manual measurement, and the extraction errors meet the requirements of real-scene conversion. The study also found when the voxel size is consistent with the minimum distance of the point cloud set by TLS instrument, it has a strong correlation with the measured value of canopy analyser. These results lay the foundation for conveniently and quickly obtaining structural parameters of trees, tree growth state detection, and canopy ecological benefit assessment. 展开更多
关键词 Leaf Area Index Terrestrial laser scanning Branch-Leaf Separation point cloud Voxelization
下载PDF
Research on 3D Laser Scanning Reconstruction of Ancient Buildings Combined with BIM Technology
6
作者 Ensheng Liu Chunyong Luo +1 位作者 Chunbaixue Yang Yuhua Huang 《Journal of Computer and Communications》 2023年第7期233-240,共8页
After more than 30 years of scientific and social development, surveying and mapping technology by leaps and bounds, engineering surveying technology has undergone tremendous changes. In the process of protecting anci... After more than 30 years of scientific and social development, surveying and mapping technology by leaps and bounds, engineering surveying technology has undergone tremendous changes. In the process of protecting ancient buildings, it is necessary to obtain the precise dimensions of architectural details. In this study, the path of 3D laser scanning combined with BIM technology is explored. Taking the observation and protection of the ancestral hall of the Liu family as an example, this study aims to draw drawings that reflect the relevant information about the ancient buildings, the accurate three-dimensional model of ancient buildings is established with BIM technology, which provides new methods and ideas for the research and protection of ancient buildings. . 展开更多
关键词 Liu Ancestral Hall 3D laser scanning Technology BIM Technology point cloud Processing
下载PDF
Indoor Space Modeling and Parametric Component Construction Based on 3D Laser Point Cloud Data
7
作者 Ruzhe Wang Xin Li Xin Meng 《Journal of World Architecture》 2023年第5期37-45,共9页
In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit so... In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit software to extract geometric information about the indoor environment.Furthermore,we proposed a method for constructing indoor elements based on parametric components.The research outcomes of this paper will offer new methods and tools for indoor space modeling and design.The approach of indoor space modeling based on 3D laser point cloud data and parametric component construction can enhance modeling efficiency and accuracy,providing architects,interior designers,and decorators with a better working platform and design reference. 展开更多
关键词 3D laser scanning technology Indoor space point cloud data Building information modeling(BIM)
下载PDF
Automated extraction of expressway road surface from mobile laser scanning data 被引量:3
8
作者 TRAN Thanh Ha TAWEEP Chaisomphob 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期1917-1938,共22页
This paper presents a voxel-based region growing method for automatic road surface extraction from mobile laser scanning point clouds in an expressway environment.The proposed method has three major steps:constructing... This paper presents a voxel-based region growing method for automatic road surface extraction from mobile laser scanning point clouds in an expressway environment.The proposed method has three major steps:constructing a voxel model;extracting the road surface points by employing the voxel-based segmentation algorithm;refining the road boundary using the curb-based segmentation algorithm.To evaluate the accuracy of the proposed method,the two-point cloud datasets of two typical test sites in an expressway environment consisting of flat and bumpy surfaces with a high slope were used.The proposed algorithm extracted the road surface successfully with high accuracy.There was an average recall of 99.5%,the precision was 96.3%,and the F1 score was 97.9%.From the extracted road surface,a framework for the estimation of road roughness was proposed.Good agreement was achieved when comparing the results of the road roughness map with the visual image,indicating the feasibility and effectiveness of the proposed framework. 展开更多
关键词 mobile laser scanning SEGMENTATION road surface EXPRESSWAY VOXELIZATION point cloud
下载PDF
Building 3D CityGML models of mining industrial structures using integrated UAV and TLS point clouds
9
作者 Canh Le Van Cuong Xuan Cao +2 位作者 Anh Ngoc Nguyen Chung Van Pham Long Quoc Nguyen 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第5期158-177,共20页
Mining industrial areas with anthropogenic engineering structures are one of the most distinctive features of the real world.3D models of the real world have been increasingly popular with numerous applications,such a... Mining industrial areas with anthropogenic engineering structures are one of the most distinctive features of the real world.3D models of the real world have been increasingly popular with numerous applications,such as digital twins and smart factory management.In this study,3D models of mining engineering structures were built based on the CityGML standard.For collecting spatial data,the two most popular geospatial technologies,namely UAV-SfM and TLS were employed.The accuracy of the UAV survey was at the centimeter level,and it satisfied the absolute positional accuracy requirement of creat-ing all levels of detail(LoD)according to the CityGML standard.Therefore,the UAV-SfM point cloud dataset was used to build LoD 2 models.In addition,the comparison between the UAV-SfM and TLS sub-clouds of facades and roofs indicates that the UAV-SfM and TLS point clouds of these objects are highly consistent,therefore,point clouds with a higher level of detail and accuracy provided by the integration of UAV-SfM and TLS were used to build LoD 3 models.The resulting 3D CityGML models include 39 buildings at LoD 2,and two mine shafts with hoistrooms,headframes,and sheave wheels at LoD3. 展开更多
关键词 3D modelling CityGML-Mining industry UAV Terrestrial laser scanning point cloud
下载PDF
Seamless integration of above-and undercanopy unmanned aerial vehicle laser scanning for forest investigation 被引量:1
10
作者 Yunsheng Wang Antero Kukko +8 位作者 Eric Hyyppä Teemu Hakala Jiri Pyörälä Matti Lehtomäki Aimad El Issaoui Xiaowei Yu Harri Kaartinen Xinlian Liang Juha Hyyppä 《Forest Ecosystems》 SCIE CSCD 2021年第1期124-138,共15页
Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exp... Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle(UAV)that flies above and under canopies in a single operation.The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight,thus grants the access to simultaneous high completeness,high efficiency,and low cost.Results:In the experiment,an approximately 0.5 ha forest was covered in ca.10 min from takeoff to landing.The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems,which leads to a 2–4 cm RMSE of the diameter at the breast height estimates,and a 4–7 cm RMSE of the stem curve estimates.Conclusions:Results of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective.Thus,it is a solution to combine the advantages of the terrestrial static,the mobile,and the above-canopy UAV observations,which is a promising step forward to achieve a fully autonomous in situ forest inventory.Future studies should be aimed to further improve the platform positioning,and to automatize the UAV operation. 展开更多
关键词 FOREST In situ INVENTORY Above canopy Under canopy Unmanned aerial vehicle laser scanning point cloud Close range remote sensing
下载PDF
A Novel Airborne 3D Laser Point Cloud Hole Repair Algorithm Considering Topographic Features 被引量:5
11
作者 Zan ZHU Shu GAN +1 位作者 Jianqi WANG Nijia QIAN 《Journal of Geodesy and Geoinformation Science》 2020年第3期29-38,共10页
Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3... Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved. 展开更多
关键词 airborne 3D laser scanning point cloud hole repair topographic feature line extraction mountain mapping
下载PDF
Assessment of handheld mobile terrestrial laser scanning for estimating tree parameters
12
作者 Cornelis Stal Jeff rey Verbeurgt +1 位作者 Lars De Sloover Alain De Wulf 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第4期1503-1513,共11页
Sustainable forest management heavily relies on the accurate estimation of tree parameters.Among others,the diameter at breast height(DBH) is important for extracting the volume and mass of an individual tree.For syst... Sustainable forest management heavily relies on the accurate estimation of tree parameters.Among others,the diameter at breast height(DBH) is important for extracting the volume and mass of an individual tree.For systematically estimating the volume of entire plots,airborne laser scanning(ALS) data are used.The estimation model is frequently calibrated using manual DBH measurements or static terrestrial laser scans(STLS) of sample plots.Although reliable,this method is time-consuming,which greatly hampers its use.Here,a handheld mobile terrestrial laser scanning(HMTLS) was demonstrated to be a useful alternative technique to precisely and efficiently calculate DBH.Different data acquisition techniques were applied at a sample plot,then the resulting parameters were comparatively analysed.The calculated DBH values were comparable to the manual measurements for HMTLS,STLS,and ALS data sets.Given the comparability of the extracted parameters,with a reduced point density of HTMLS compared to STLS data,and the reasonable increase of performance,with a reduction of acquisition time with a factor of5 compared to conventional STLS techniques and a factor of3 compared to manual measurements,HMTLS is considered a useful alternative technique. 展开更多
关键词 Forest inventory DBH Airborne laser scanning Terrestrial laser scanning Handheld mobile laser scanning point cloud processing
下载PDF
Intelligent virtualization of crane lifting using laser scanning technology
13
作者 Lihui HUANG Souravik DUTTA Yiyu CAI 《Virtual Reality & Intelligent Hardware》 2020年第2期87-103,共17页
Background This paper presents an intelligent path planner for lifting tasks by tower cranes in highly complex environments,such as old industrial plants that were built many decades ago and sites used as tentative st... Background This paper presents an intelligent path planner for lifting tasks by tower cranes in highly complex environments,such as old industrial plants that were built many decades ago and sites used as tentative storage spaces.Generally,these environments do not have workable digital models and 3 D representations are impractical.Methods The current investigation introduces the use of cutting edge laser scanning technology to convert real environments into virtualized versions of the construction sites or plants in the form of point clouds.The challenge is in dealing with the large point cloud datasets from the multiple scans needed to produce a complete virtualized model.The tower crane is also virtualized for the purpose of path planning.A parallelized genetic algorithm is employed to achieve intelligent path planning for the lifting task performed by tower cranes in complicated environments taking advantage of graphics processing unit technology,which has high computing performance yet low cost.Results Optimal lifting paths are generate d in several seconds. 展开更多
关键词 laser scanning point cloud Intelligent modeling Virtualization of complex environments Virtual tower crane Automatic lifting path planning RASTERIZATION
下载PDF
Filtering of Airborne Lidar Point Clouds for Complex Cityscapes 被引量:6
14
作者 JIANG Jingjue ZHANG Zuxun MING Ying 《Geo-Spatial Information Science》 2008年第1期21-25,共5页
A novel filtering algorithm for Lidar point clouds is presented, which can work well for complex cityscapes. Its main features are filtering based on raw Lidar point clouds without previous triangulation or rasterizat... A novel filtering algorithm for Lidar point clouds is presented, which can work well for complex cityscapes. Its main features are filtering based on raw Lidar point clouds without previous triangulation or rasterization. 3D topological relations among points are used to search edge points at the top of discontinuities, which are key information to recognize the bare earth points and building points. Experiment results show that the proposed algorithm can preserve discontinuous features in the bare earth and has no impact of size and shape of buildings. 展开更多
关键词 FILTERING SEGMENTATION laser scanning LIDAR point clouds
下载PDF
Automated registration of wide-baseline point clouds in forests using discrete overlap search
15
作者 Onni Pohjavirta Xinlian Liang +6 位作者 Yunsheng Wang Antero Kukko Jiri Pyorala Eric Hyyppa Xiaowei Yu Harri Kaartinen Juha Hyyppa 《Forest Ecosystems》 SCIE CSCD 2022年第6期852-877,共26页
Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition const... Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition constraints brought by on-site conditions.Previous studies have indicated that the data-acquisition pattern can have more influence on the registration results than other factors.In practice,the ideal short-baseline observations,i.e.,the dense collection mode,is rarely feasible,considering the low accessibility in forest environments and the commonly limited labor and time resources.The wide-baseline observations that cover a forest site using a few folds less observations than short-baseline observations,are therefore more preferable and commonly applied.Nevertheless,the wide-baseline approach is more challenging for data registration since it typically lacks the required sufficient overlaps between datasets.Until now,a robust automated registration solution that is independent of special hardware requirements has still been missing.That is,the registration accuracy is still far from the required level,and the information extractable from the merged point cloud using automated registration could not match that from the merged point cloud using manual registration.This paper proposes a discrete overlap search(DOS)method to find correspondences in the point clouds to solve the low-overlap problem in the wide-baseline point clouds.The proposed automatic method uses potential correspondences from both original data and selected feature points to reconstruct rough observation geometries without external knowledge and to retrieve precise registration parameters at data-level.An extensive experiment was carried out with 24 forest datasets of different conditions categorized in three difficulty levels.The performance of the proposed method was evaluated using various accuracy criteria,as well as based on data acquired from different hardware,platforms,viewing perspectives,and at different points of time.The proposed method achieved a 3D registration accuracy at a 0.50-cm level in all difficulty categories using static terrestrial acquisitions.In the terrestrial-aerial registration,data sets were collected from different sensors and at different points of time with scene changes,and a registration accuracy at the raw data geometric accuracy level was achieved.These results represent the highest automated registration accuracy and the strictest evaluation so far.The proposed method is applicable in multiple scenarios,such as 1)the global positioning of individual under-canopy observations,which is one of the main challenges in applying terrestrial observations lacking a global context,2)the fusion of point clouds acquired from terrestrial and aerial perspectives,which is required in order to achieve a complete forest observation,3)mobile mapping using a new stop-and-go approach,which solves the problems of lacking mobility and slow data collection in static terrestrial measurements as well as the data-quality issue in the continuous mobile approach.Furthermore,this work proposes a new error estimate that units all parameter-level errors into a single quantity and compensates for the downsides of the widely used parameter-and object-level error estimates;it also proposes a new deterministic point sets registration method as an alternative to the popular sampling methods. 展开更多
关键词 Close-range sensing Forest Registration point cloud Wide-baseline Terrestrial laser scanning Unmanned aerial vehicle Drone In situ Discrete overlap search
下载PDF
Development of 3D Scanning System for Robotic Plasma Processing of Medical Products with Complex Geometries
16
作者 Darya L.Alontseva Elaheh Ghassemieh +1 位作者 Alexander L.Krasavin Albina T.Kadyroldina 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第3期212-222,共11页
This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyap... This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine. 展开更多
关键词 Plasma processing point cloud robot manipulator surface segmentation three-dimensional(3D)scanning
下载PDF
Usage of 3D Point Cloud Data in BIM (Building Information Modelling): Current Applications and Challenges
17
作者 Tan Qu Wei Sun 《Journal of Civil Engineering and Architecture》 2015年第11期1269-1278,共10页
BIM (building information modelling) has gained wider acceptance in the A/E/C (architecture/engineering/construction) industry in the US and internationally. This paper presents current industry approaches of impl... BIM (building information modelling) has gained wider acceptance in the A/E/C (architecture/engineering/construction) industry in the US and internationally. This paper presents current industry approaches of implementing 3D point cloud data in BIM and VDC (virtual design and construction) applications during various stages of a project life cycle and the challenges associated with processing the huge amount of 3D point cloud data. Conversion from discrete 3D point cloud raster data to geometric/vector BIM data remains to be a labor-intensive process. The needs for intelligent geometric feature detection/reconstruction algorithms for automated point cloud processing and issues related to data management are discussed. This paper also presents an innovative approach for integrating 3D point cloud data with BIM to efficiently augment built environment design, construction and management. 展开更多
关键词 BIM point cloud laser scanning 3D
下载PDF
Methodology for Extraction of Tunnel Cross-Sections Using Dense Point Cloud Data
18
作者 Yueqian SHEN Jinguo WANG +2 位作者 Jinhu WANG Wei DUAN Vagner G.FERREIRA 《Journal of Geodesy and Geoinformation Science》 2021年第2期56-71,共16页
Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minute... Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minutes as an innovation technique,which provides promising applications in tunnel deformation monitoring.Here,an efficient method for extracting tunnel cross-sections and convergence analysis using dense TLS point cloud data is proposed.First,the tunnel orientation is determined using principal component analysis(PCA)in the Euclidean plane.Two control points are introduced to detect and remove the unsuitable points by using point cloud division and then the ground points are removed by defining an elevation value width of 0.5 m.Next,a z-score method is introduced to detect and remove the outlies.Because the tunnel cross-section’s standard shape is round,the circle fitting is implemented using the least-squares method.Afterward,the convergence analysis is made at the angles of 0°,30°and 150°.The proposed approach’s feasibility is tested on a TLS point cloud of a Nanjing subway tunnel acquired using a FARO X330 laser scanner.The results indicate that the proposed methodology achieves an overall accuracy of 1.34 mm,which is also in agreement with the measurements acquired by a total station instrument.The proposed methodology provides new insights and references for the applications of TLS in tunnel deformation monitoring,which can also be extended to other engineering applications. 展开更多
关键词 CROSS-SECTION control point convergence analysis z-score method terrestrial laser scanning dense point cloud data
下载PDF
三维重建技术中的高效光条提取方法(特邀)
19
作者 宋丽梅 佟宇 +1 位作者 李金义 王远航 《红外与激光工程》 EI CSCD 北大核心 2024年第9期107-115,共9页
近年来,三维重建技术在工业检测、医疗成像等领域得到了广泛应用。然而,由于被测物体形状的复杂性以及环境噪声等因素的影响,现有的光条提取算法面临着提取速度慢和重建精度差的挑战。为了解决这些问题,对现有技术进行了深入分析,明确... 近年来,三维重建技术在工业检测、医疗成像等领域得到了广泛应用。然而,由于被测物体形状的复杂性以及环境噪声等因素的影响,现有的光条提取算法面临着提取速度慢和重建精度差的挑战。为了解决这些问题,对现有技术进行了深入分析,明确了其在处理复杂形状和噪声干扰时的局限性,提出了一种基于三维重建的高效光条提取(ELE-3D)算法。在ELE-3D算法中,通过Sobel算子精确提取图像边缘,进行二值化处理简化图像复杂性,并利用连通域分析区分噪声与条纹。通过设置面积和长宽比阈值,保留关键特征,来确定感兴趣区域(ROI),精确地识别并提取图像中的特定几何特征区域,同时有效抑制背景噪声,不仅提高了图像的质量,还确保了能够专注于分析图像中最关键的部分。实验结果表明,ELE-3D算法有效地提高了光条提取速度,并有效地抑制了噪声的干扰。在保证重建精度的前提下,测量同一物体相比较于传统的算法Steger和灰度重心法,速度分别提高了89.0%和85.3%。 展开更多
关键词 光条提取 三维重建 多视角点云 激光扫描
下载PDF
基于边缘卷积的点云配准网络
20
作者 鲍国 刘思谋 +2 位作者 许士彪 张秋昭 段浩然 《金属矿山》 CAS 北大核心 2024年第9期167-174,共8页
地下巷道结构狭长且支道繁多,在地下巷道中获取的点云需要进行点云配准获得完整数据,传统的点云配准方法对点云初始位置要求高并且计算迭代次数多,在环境复杂且数据量巨大的地下巷道场景点云中配准效果不佳且计算缓慢。因此,基于深度学... 地下巷道结构狭长且支道繁多,在地下巷道中获取的点云需要进行点云配准获得完整数据,传统的点云配准方法对点云初始位置要求高并且计算迭代次数多,在环境复杂且数据量巨大的地下巷道场景点云中配准效果不佳且计算缓慢。因此,基于深度学习技术,以PCRNet为基础并结合边缘卷积网络在局部特征提取中的优势,构建了一种基于边缘卷积的点云直接配准网络DGRNet,该网络在特征提取模块利用边缘卷积核对输入的点云进行特征提取,能更好地对三维点云的复杂特征变化和几何结构进行学习,提高了对场景局部特征的理解能力。试验结果表明:DGRNet网络在物体模型中对比其他网络在整体上有着更好的配准精度,并且在点云噪声影响下能够保持配准精度稳定,有着较好的鲁棒性;DGRNet在巷道点云配准场景中的4种误差均最小,并且对比PCRNet误差分别降低了19.0%、20.1%、24.2%、21.0%。由此可见,DGRNet网络能够进行高精度的点云配准,为复杂的地下巷道场景点云配准提供了一种新方法。 展开更多
关键词 点云配准 深度学习 三维激光扫描 巷道 PCRNet DGRNet
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部