Objective: To explore the correlation between the spectral computed tomography(CT) imaging parameters and the Ki-67 labeling index in lung adenocarcinoma.Methods: Spectral CT imaging parameters [iodine concentrations ...Objective: To explore the correlation between the spectral computed tomography(CT) imaging parameters and the Ki-67 labeling index in lung adenocarcinoma.Methods: Spectral CT imaging parameters [iodine concentrations of lesions(ICLs) in the arterial phase(ICLa)and venous phase(ICLv), normalized IC in the aorta(NICa/NICv), slope of the spectral HU curve(λHUa/λHUv)and monochromatic CT number enhancement on 40 keV and 70 keV images(CT40 keVa/v, CT70keVa/v)] in 34 lung adenocarcinomas were analyzed, and common molecular markers, including the Ki-67 labeling index, were detected with immunohistochemistry. Different Ki-67 labeling indexes were measured and grouped into four grades according to the number of positive-stained cells(grade 0, ≤1%;1%<grade 1≤10%;10%<grade 2≤30%;and grade 3, >30%). One-way analysis of variance(ANOVA) was used to compare the four different grades, and the Bonferroni method was used to correct the P value for multiple comparisons. A Spearman correlation analysis was performed to further research a quantitative correlation between the Ki-67 labeling index and spectral CT imaging parameters.Results: CT40keVa, CT40 keVv, CT70keVa and CT70keVv increased as the grade increased, and CT70keVa and CT70keVv were statistically significant(P<0.05). These four parameters and the Ki-67 labeling index showed a moderate positive correlation with lung adenocarcinoma nodules. ICL, NIC and λHU in the arterial and venous phases were not significantly different among the four grades.Conclusions: The spectral CT imaging parameters CT40keVa, CT40keVv, CT70keVa and CT70keVv gradually increased with Ki-67 expression and showed a moderate positive correlation with lung adenocarcinomas.Therefore, spectral CT imaging parameter-enhanced monochromatic CT numbers at 70 keV may indicate the extent of proliferation of lung adenocarcinomas.展开更多
Spectral reflectance in the near-infrared (NIR) shoulder (750-900 nm) region is affected by internal leaf structure, but it has rarely been investigated. In this study, a dehydration treatment and three paraquat h...Spectral reflectance in the near-infrared (NIR) shoulder (750-900 nm) region is affected by internal leaf structure, but it has rarely been investigated. In this study, a dehydration treatment and three paraquat herbicide applications were conducted to explore how spectral reflectance and shape in the NIR shoulder region responded to various stresses. A new spectral ratio index in the NIR shoulder region (NSRI), defined by a simple ratio of reflectance at 890 nm to reflectance at 780 nm, was proposed for assessing leaf structure deterioration. Firstly, a wavelength-independent increase in spectral reflectance in the NIR shoulder region was observed from the mature leaves with slight dehydration. An increase in spectral slope in the NIR shoulder would be expected only when water stress developed sufficiently to cause severe leaf dehydration resulting in an alteration in cell structure. Secondly, the alteration of leaf cell structure caused by Paraquat herbicide applications resulted in a wavelength-dependent variation of spectral reflectance in the NIR shoulder region. The NSRI in the NIR shoulder region increased significantly under an herbicide application. Although the dehydration process also occurred with the herbicide injury, NSRI is more sensitive to herbicide injury than the water-related indices (water index and normalized difference water index) and normalized difference vegetation index. Finally, the sensitivity of NSRI to stripe rust in winter wheat was examined, yielding a determination coefficient of 0.61, which is more significant than normalized difference vegetation index (NDVI), water index (WI) and normalized difference water index (NDWI), with a determination coefficient of 0.45, 0.36 and 0.13, respectively. In this study, all experimental results demonstrated that NSRI will increase with internal leaf structure deterioration, and it is also a sensitive spectral index for herbicide injury or stripe rust in winter wheat.展开更多
In this study, strong ground motion record (SGMR) selection based on Eta (~/) as a spectral shape indicator has been investigated as applied to steel braced flame structures. A probabilistic seismic hazard disaggr...In this study, strong ground motion record (SGMR) selection based on Eta (~/) as a spectral shape indicator has been investigated as applied to steel braced flame structures. A probabilistic seismic hazard disaggregation analysis for the definition of the target Epsilon (ε) and the target Eta (η) values at different hazard levels is presented, taking into account appropriately selected SGMR's. Fragility curves are developed for different limit states corresponding to three representative models of typical steel braced frames having significant irregularities in plan, by means of a weighted damage index. The results show that spectral shape indicators have an important effect on the predicted median structural capacities, and also that the parameter r/is a more robust predictor of damage than searching for records with appropriate c values.展开更多
Spectral index methodology has been widely used in Leaf Area Index(LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect ...Spectral index methodology has been widely used in Leaf Area Index(LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect generated during the use of spectral indices to retrieve LAI. In this study, PROSPECT, leaf optical properties model and Scattering by Arbitrarily Inclined Layers(SAIL) model, were used to simulate canopy spectral reflectance with a bandwidth of 5 nm and a Gaussian spectral response function was employed to simulate the spectral data at six bandwidths ranging from 10 to 35 nm. Additionally, for bandwidths from 5 to 35 nm, the correlation between the spectral index and LAI, and the sensitivities of the spectral index to changes in LAI and bandwidth were analyzed. Finally, the reflectance data at six bandwidths ranging from 40 to 65 nm were used to verify the spectral scale effect generated during the use of the spectral index to retrieve LAI. Results indicate that Vegetation Index of the Universal Pattern Decomposition(VIUPD) had the highest accuracy during LAI retrieval. Followed by Normalized Difference Vegetation Index(NDVI), Modified Simple Ratio Indices(MSRI) and Triangle Vegetation Index(TVI), although the coefficient of determination R^2 was higher than 0.96, the retrieved LAI values were less than the actual value and thus lacked validity. Other spectral indices were significantly affected by the spectral scale effect with poor retrieval results. In this study, VIUPD, which exhibited a relatively good correlation and sensitivity to LAI, was less affected by the spectral scale effect and had a relatively good retrieval capability. This conclusion supports a purported feature independent of the sensor of this model and also confirms the great potential of VIUPD for retrieval of physicochemical parameters of vegetation using multi-source remote sensing data.展开更多
A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical ref...A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical reflectance index(PRI).NDVI is useful for indicating crop growth/phenology,whereas PRI was developed for observing physiological conditions.Thus,the seasonal change patterns of NDVI and PRI are two valuable pieces of information in a crop-monitoring system.However,capturing the seasonal patterns is considered challenging because the vegetation index values estimated by the reflection from vegetation are often governed by meteorological conditions,such as solar irradiance and precipitation.Further,unlike growth/phenology,the physiological condition has diurnal changes as well as seasonal characteristics.This study proposed a novel filtering method for extracting the seasonal signals of SRS-based NDVI and PRI in paddy rice,barley,and garlic.First,the measurement accuracy of SRSs was compared with handheld spectrometers,and the R^(2)values between the two devices were 0.96 and 0.81 for NDVI and PRI,respectively.Second,the experimental study of threshold criteria with respect to meteorological variables(i.e.,insolation,cloudiness,sunshine duration,and precipitation)was conducted,and sunshine duration was the most useful one for excluding distorted values of the vegetation indices.After data processing based on sunshine duration,the R^(2)values between the measured vegetation indices and the extracted seasonal signals of vegetation indices increased by approximately 0.002–0.004(NDVI)and 0.065–0.298(PRI)on the three crops,and the seasonal signals of vegetation indices became noticeably improved.This method will contribute to an agricultural monitoring system by identifying the seasonal changes in crop growth and physiological conditions.展开更多
选取典型芦苇湿地基于芦苇叶片实测高光谱数据和叶面积指数(Leaf Area Index,LAI),在原始光谱的基础上进行了平滑(R)、一阶微分(FD)、倒数(RT)、对数(LT)、倒数一阶微分(RTFD)、对数一阶微分(LTFD)等六种光谱变换,利用竞争性自适应重加...选取典型芦苇湿地基于芦苇叶片实测高光谱数据和叶面积指数(Leaf Area Index,LAI),在原始光谱的基础上进行了平滑(R)、一阶微分(FD)、倒数(RT)、对数(LT)、倒数一阶微分(RTFD)、对数一阶微分(LTFD)等六种光谱变换,利用竞争性自适应重加权算法(CARS)对不同变换下芦苇LAI特征光谱波段予以筛选,进而用筛选的特征波段采用逐波段组合法(BCI)构建芦苇LAI敏感光谱指数,利用随机森林(RF)、极端梯度提升(XGBoost)以及支持向量机(SVM)回归算法,构建芦苇LAI的高光谱估算模型。结果表明,采用CARS算法筛选不同变换光谱的特征波段构建模型,发现经过FD变换(R~2=0.417,RMSE=0.905)的模型效果最优。在CARS基础上使用筛选过后的特征波段构建植被指数进行建模比较,模型效果最好的是XGBoost(R2=0.620,RMSE=0.826)。展开更多
Real-time monitoring of nitrogen status in rice and wheat plant is of significant importance for nitrogen diagnosis, fertilization recommendation, and productivity prediction. With 11 field experiments involving diffe...Real-time monitoring of nitrogen status in rice and wheat plant is of significant importance for nitrogen diagnosis, fertilization recommendation, and productivity prediction. With 11 field experiments involving different cultivars, nitrogen rates, and water regimes, time-course measurements were taken of canopy hyperspeetral reflectance between 350-2 500 nm and leaf nitrogen accumulation (LNA) in rice and wheat. A new spectral analysis method through the consideration of characteristics of canopy components and plant growth status varied with phenological growth stages was designed to explore the common central bands in rice and wheat. Comprehensive analyses were made on the quantitative relationships of LNA to soil adjusted vegetation index (SAVI) and ratio vegetation index (RVI) composed of any two bands between 350-2 500 nm in rice and wheat. The results showed that the ranges of indicative spectral reflectance were largely located in 770-913 and 729-742 nm in both rice and wheat. The optimum spectral vegetation index for estimating LNA was SAVI (R822, R738) during the early-mid period (from jointing to booting), and it was RVI (Rs22, R73s) during the mid-late period (from heading to filling) with the common central bands of 822 and 738 nm in rice and wheat. Comparison of the present spectral vegetation indices with previously reported vegetation indices gave a satisfactory performance in estimating LNA. It is concluded that the spectral bands of 822 and 738 nm can be used as common reflectance indicators for monitoring leaf nitrogen accumulation in rice and wheat.展开更多
Leaf area index (LAI) is an important parameter in a number of models related to ecosystem functioning, carbon budgets, climate, hydrology, and crop growth simulation. Mapping and monitoring the spatial and temporal...Leaf area index (LAI) is an important parameter in a number of models related to ecosystem functioning, carbon budgets, climate, hydrology, and crop growth simulation. Mapping and monitoring the spatial and temporal variations of LAI are necessary for understanding crop growth and development at regional level. In this study, the relationships between LAI of winter wheat and Landsat TM spectral vegetation indices (SVIs) were analyzed by using the curve estimation procedure in North China Plain. The series of LAI maps retrieved by the best regression model were used to assess the spatial and temporal variations of winter wheat LAI. The results indicated that the general relationships between LAI and SVIs were curvilinear, and that the exponential model gave a better fit than the linear model or other nonlinear models for most SVIs. The best regression model was constructed using an exponential model between surface-reflectance-derived difference vegetation index (DVI) and LAI, with the adjusted R2 (0.82) and the RMSE (0.77). The TM LAI maps retrieved from DVILAI model showed the significant spatial and temporal variations. The mean TM LAI value (30 m) for winter wheat of the study area increased from 1.29 (March 7, 2004) to 3.43 (April 8, 2004), with standard deviations of 0.22 and 1.17, respectively. In conclusion, spectral vegetation indices from multi-temporal Landsat TM images can be used to produce fine-resolution LAI maps for winter wheat in North China Plain.展开更多
The research was conducted to determine the relationships of protein and starch accumulation dynamics in grains of wheat to post-heading leaf SPAD values and canopy spectral reflectance. The results showed that leaf n...The research was conducted to determine the relationships of protein and starch accumulation dynamics in grains of wheat to post-heading leaf SPAD values and canopy spectral reflectance. The results showed that leaf nitrogen accumulation was exponentially related to leaf SPAD values and linearly related to canopy spectral reflectance, and that there was negative linear relationship between leaf nitrogen accumulation and grain protein accumulation, but positive linear relationship between post-heading leaf nitrogen transloca-tion and grain protein accumulation at maturity. In addition, leaf SPAD values were parabolically related with and ratio indices R(l 500,610)and R(l 220,560)were exponentially related with protein and starch accumulation in grains. These results indicate that leaf SPAD values and canopy spectral reflectance should be good indicators of quality formation dynamics in wheat grains.展开更多
Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced tech...Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced technologies are used to efficiently and accurately assess the status of salinization processes. Case studies to determine the relations between particular types of salinization and their spectral reflectances are essential because of the distinctive characteristics of the reflectance spectra of particular salts. During April 2015 we collected surface soil samples(0–10 cm depth) at 64 field sites in the downstream area of Minqin Oasis in Northwest China, an area that is undergoing serious salinization. We developed a linear model for determination of salt content in soil from hyperspectral data as follows. First, we undertook chemical analysis of the soil samples to determine their soluble salt contents. We then measured the reflectance spectra of the soil samples, which we post-processed using a continuum-removed reflectance algorithm to enhance the absorption features and better discriminate subtle differences in spectral features. We applied a normalized difference salinity index to the continuum-removed hyperspectral data to obtain all possible waveband pairs. Correlation of the indices obtained for all of the waveband pairs with the wavebands corresponding to measured soil salinities showed that two wavebands centred at wavelengths of 1358 and 2382 nm had the highest sensitivity to salinity. We then applied the linear regression modelling to the data from half of the soil samples to develop a soil salinity index for the relationships between wavebands and laboratory measured soluble salt content. We used the hyperspectral data from the remaining samples to validate the model. The salt content in soil from Minqin Oasis were well produced by the model. Our results indicate that wavelengths at 1358 and 2382 nm are the optimal wavebands for monitoring the concentrations of chlorine and sulphate compounds, the predominant salts at Minqin Oasis. Our modelling provides a reference for future case studies on the use of hyperspectral data for predictive quantitative estimation of salt content in soils in arid regions. Further research is warranted on the application of this method to remotely sensed hyperspectral data to investigate its potential use for large-scale mapping of the extent and severity of soil salinity.展开更多
Remote sensing technology, as the most advanced method for collecting data, along with the common ways often used in the past on research of environmental science, was integrated to study the relationship between envi...Remote sensing technology, as the most advanced method for collecting data, along with the common ways often used in the past on research of environmental science, was integrated to study the relationship between environmental pollution of coal mine and spectral characteristics of nearby plants. With compositive index and mean reflectivity at near infrared, a regression equation was established, and a conclusion was made that spectral reflectivity can be used to distinguish regions with different pollution degree. Through testing with real status of the research region, it is verified that this kind of integration and conclusion not only are helpful for human being in controlling the movement law of pollutants and the corresponding change of coal mine environmental quality but also bring a new way for the research of environment problems of coal mine.展开更多
Glacial lake mapping provides the most feasible way for investigating the water resources and monitoring the flood outburst hazards in High Mountain Region.However,various types of glacial lakes with different propert...Glacial lake mapping provides the most feasible way for investigating the water resources and monitoring the flood outburst hazards in High Mountain Region.However,various types of glacial lakes with different properties bring a constraint to the rapid and accurate glacial lake mapping over a large scale.Existing spectral features to map glacial lakes are diverse but some are generally limited to the specific glaciated regions or lake types,some have unclear applicability,which hamper their application for the large areas.To this end,this study provides a solution for evaluating the most effective spectral features in glacial lake mapping using Landsat-8 imagery.The 23 frequently-used lake mapping spectral features,including single band reflectance features,Water Index features and image transformation features were selected,then the insignificant features were filtered out based on scoring calculated from two classical feature selection methods-random forest and decision tree algorithm.The result shows that the three most prominent spectral features(SF)with high scores are NDWI1,EWI,and NDWI3(renamed as SF8,SF19 and SF12 respectively).Accuracy assessment of glacial lake mapping results in five different test sites demonstrate that the selected features performed well and robustly in classifying different types of glacial lakes without any influence from the mountain shadows.SF8 and SF19 are superior for the detection of large amount of small glacial lakes,while some lake areas extracted by SF12 are incomplete.Moreover,SF8 achieved better accuracy than the other two features in terms of both Kappa Coefficient(0.8812)and Prediction(0.9025),which further indicates that SF8 has great potential for large scale glacial lake mapping in high mountainous area.展开更多
Atrial fibrillation (Afib) is related with heart failure, stroke, and high mortality rates. In frequency domain analysis, pre-requisite for Afib detection has been the estimation of reliable dominant frequency (DF) of...Atrial fibrillation (Afib) is related with heart failure, stroke, and high mortality rates. In frequency domain analysis, pre-requisite for Afib detection has been the estimation of reliable dominant frequency (DF) of atrial signals via different spectral estimation techniques. DF further characterizes Afib, and helps in its treatment. This paper aims at finding the most appropriate nonparametric FFT-based spectral estimation technique to estimate reliable DF for Afib detection. In this work, real-time intra-atrial electrograms have been acquired and pre-processed for frequency analysis. DF is estimated via Bartlett using Hanning window, and Welch methods. Regularity index (RI), a parameter to ensure reliability of DF, is calculated using Simpson 3/8 and Trapezoidal rules. The best method is declared based upon high accuracy of Afib detection using reliable DF. On comparison, Welch method is found to be more appropriate to estimate reliable DF for Afib detection with 98% accuracy.展开更多
Using satellite data for geological mapping beside saving time and reducing coast leads to increased accuracy. In this study, the result of remote sensing techniques has been compared for manifesting geological units....Using satellite data for geological mapping beside saving time and reducing coast leads to increased accuracy. In this study, the result of remote sensing techniques has been compared for manifesting geological units. The study area is limited to 1:25,000 rectangle of Pasab-e-Bala which is located in the northeast of Isfahan and West of Qom-Zefreh fault. This region mainly consists of Devonian and Quaternary sedimentary units. In this study, ASTER and OLI satellite data has been corrected atmospherically and radiometrically. Spectral Analogues method and OLI band combination (652) in RGB image were powerful in distinguishing various rock units. Finally, a new geologic map of the Pasab-e-Bala area was created by integrating the results of remote sensing, previous geological maps and field inspection. It is concluded that the workflow of Landsat 8 image processing, interpretation and ground inspection have a great potential to identify geological formations. According to field data originality, accuracy of the produced map was evaluated through calculating kappa index and overall accuracy and a thematic accuracy of 86% was achieved for geological formations.展开更多
This research aims to define an efficient and fast quantification of bitumen removal on the road surface by Digital Imaging Processing (DIP) and spectral analysis. The retrieval of bitumen removal is an important issu...This research aims to define an efficient and fast quantification of bitumen removal on the road surface by Digital Imaging Processing (DIP) and spectral analysis. The retrieval of bitumen removal is an important issue for road management and environmental studies related to asphalt wear and environmental pollution. The calculation of the Exposed Aggregate Index (EAI), based on DIP, allows to quantify in each frame the superficial removal of bitumen and the exposure of aggregates. A procedure, based on non-parametric classification process of digital images, gives a fast response of EAI. A correlation among EAI and spectral data, between 390 nm and 900 nm range, is evaluated. Results show a good correlation between spectral data at different wavelength and EAI. Finally, this work evaluates the possibility to retrieve asphalt bitumen removal through remote sensed imagery.展开更多
Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of m...Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, Huan Jing-Hyper Spectral Imager(HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm(NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index(NSSRI) was constructed from continuum-removed reflectance(CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area(NDVI705 < 0.2). The soil adjusted salinity index(SAVI) was applied to predict the soil salt content in the vegetation-covered area(NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping(R2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale.展开更多
Let A=M-N be a regular splitting of an M-matrix. We study the spectral properties of the ineration matrix M-1N. Under a mild assumption on M-1 N. some necessary and sufficent conditions such that p(M-1N)=1 are obtaine...Let A=M-N be a regular splitting of an M-matrix. We study the spectral properties of the ineration matrix M-1N. Under a mild assumption on M-1 N. some necessary and sufficent conditions such that p(M-1N)=1 are obtained and the algebraic multiplicity and the index associated with eigenvalue 1 in M-1N are considered.展开更多
We report the observation of spectral broadening induced by 200 femtosecond laser pulses with the repetition rate of 1 kHz at the wavelength of 532 nm in semi-insulating 4H–SiC single crystals.It is demonstrated that...We report the observation of spectral broadening induced by 200 femtosecond laser pulses with the repetition rate of 1 kHz at the wavelength of 532 nm in semi-insulating 4H–SiC single crystals.It is demonstrated that the full width at half maximum of output spectrum increases linearly with the light propagation length and the peak power density,reaching a maximum 870 cm-1on a crystal of 19 mm long under an incident laser with a peak power density of 60.1 GW/cm2.Such spectral broadening can be well explained by the self-phase modulation model which correlates time-dependent phase change of pulses to intensity-dependent refractive index.The nonlinear refractive index n2 is estimated to be1.88×10-15cm2/W.The intensity-dependent refractive index is probably due to both the nonlinear optical polarizability of the bound electrons and the increase of free electrons induced by the two-photon absorption process.Super continuum spectra could arise as crystals are long enough to induce the self-focusing effect.The results show that SiC crystals may find applications in spectral broadening of high power lasers.展开更多
An improved method based on minimum mean square error-short time spectral amplitude (MMSE-STSA) is proposed to cancel background noise in whispered speech. Using the acoustic character of whispered speech, the algor...An improved method based on minimum mean square error-short time spectral amplitude (MMSE-STSA) is proposed to cancel background noise in whispered speech. Using the acoustic character of whispered speech, the algorithm can track the change of non-stationary background noise effectively. Compared with original MMSE-STSA algorithm and method in selectable mode Vo-coder (SMV), the improved algorithm can further suppress the residual noise for low signal-to-noise radio (SNR) and avoid the excessive suppression. Simulations show that under the non-stationary noisy environment, the proposed algorithm can not only get a better performance in enhancement, but also reduce the speech distortion.展开更多
基金supported by National Natural Science Foundation of China (No. 91959116)Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (No. ZYLX 201803)+1 种基金“Beijing Hospitals Authority” Ascent Plan (No. DFL20191103)National Key R&D Program of China (No. 2017YFC1309101, 2017YFC1309104).
文摘Objective: To explore the correlation between the spectral computed tomography(CT) imaging parameters and the Ki-67 labeling index in lung adenocarcinoma.Methods: Spectral CT imaging parameters [iodine concentrations of lesions(ICLs) in the arterial phase(ICLa)and venous phase(ICLv), normalized IC in the aorta(NICa/NICv), slope of the spectral HU curve(λHUa/λHUv)and monochromatic CT number enhancement on 40 keV and 70 keV images(CT40 keVa/v, CT70keVa/v)] in 34 lung adenocarcinomas were analyzed, and common molecular markers, including the Ki-67 labeling index, were detected with immunohistochemistry. Different Ki-67 labeling indexes were measured and grouped into four grades according to the number of positive-stained cells(grade 0, ≤1%;1%<grade 1≤10%;10%<grade 2≤30%;and grade 3, >30%). One-way analysis of variance(ANOVA) was used to compare the four different grades, and the Bonferroni method was used to correct the P value for multiple comparisons. A Spearman correlation analysis was performed to further research a quantitative correlation between the Ki-67 labeling index and spectral CT imaging parameters.Results: CT40keVa, CT40 keVv, CT70keVa and CT70keVv increased as the grade increased, and CT70keVa and CT70keVv were statistically significant(P<0.05). These four parameters and the Ki-67 labeling index showed a moderate positive correlation with lung adenocarcinoma nodules. ICL, NIC and λHU in the arterial and venous phases were not significantly different among the four grades.Conclusions: The spectral CT imaging parameters CT40keVa, CT40keVv, CT70keVa and CT70keVv gradually increased with Ki-67 expression and showed a moderate positive correlation with lung adenocarcinomas.Therefore, spectral CT imaging parameter-enhanced monochromatic CT numbers at 70 keV may indicate the extent of proliferation of lung adenocarcinomas.
基金the National High-Tech R&D Program of China(2012AA12A30701)the National Natural Science Foundation of China(91125003,41222008)
文摘Spectral reflectance in the near-infrared (NIR) shoulder (750-900 nm) region is affected by internal leaf structure, but it has rarely been investigated. In this study, a dehydration treatment and three paraquat herbicide applications were conducted to explore how spectral reflectance and shape in the NIR shoulder region responded to various stresses. A new spectral ratio index in the NIR shoulder region (NSRI), defined by a simple ratio of reflectance at 890 nm to reflectance at 780 nm, was proposed for assessing leaf structure deterioration. Firstly, a wavelength-independent increase in spectral reflectance in the NIR shoulder region was observed from the mature leaves with slight dehydration. An increase in spectral slope in the NIR shoulder would be expected only when water stress developed sufficiently to cause severe leaf dehydration resulting in an alteration in cell structure. Secondly, the alteration of leaf cell structure caused by Paraquat herbicide applications resulted in a wavelength-dependent variation of spectral reflectance in the NIR shoulder region. The NSRI in the NIR shoulder region increased significantly under an herbicide application. Although the dehydration process also occurred with the herbicide injury, NSRI is more sensitive to herbicide injury than the water-related indices (water index and normalized difference water index) and normalized difference vegetation index. Finally, the sensitivity of NSRI to stripe rust in winter wheat was examined, yielding a determination coefficient of 0.61, which is more significant than normalized difference vegetation index (NDVI), water index (WI) and normalized difference water index (NDWI), with a determination coefficient of 0.45, 0.36 and 0.13, respectively. In this study, all experimental results demonstrated that NSRI will increase with internal leaf structure deterioration, and it is also a sensitive spectral index for herbicide injury or stripe rust in winter wheat.
文摘In this study, strong ground motion record (SGMR) selection based on Eta (~/) as a spectral shape indicator has been investigated as applied to steel braced flame structures. A probabilistic seismic hazard disaggregation analysis for the definition of the target Epsilon (ε) and the target Eta (η) values at different hazard levels is presented, taking into account appropriately selected SGMR's. Fragility curves are developed for different limit states corresponding to three representative models of typical steel braced frames having significant irregularities in plan, by means of a weighted damage index. The results show that spectral shape indicators have an important effect on the predicted median structural capacities, and also that the parameter r/is a more robust predictor of damage than searching for records with appropriate c values.
基金National Natural Science Foundation of China(No.41401002)Jilin Province Science Foundation for Youths(No.20160520077JH)
文摘Spectral index methodology has been widely used in Leaf Area Index(LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect generated during the use of spectral indices to retrieve LAI. In this study, PROSPECT, leaf optical properties model and Scattering by Arbitrarily Inclined Layers(SAIL) model, were used to simulate canopy spectral reflectance with a bandwidth of 5 nm and a Gaussian spectral response function was employed to simulate the spectral data at six bandwidths ranging from 10 to 35 nm. Additionally, for bandwidths from 5 to 35 nm, the correlation between the spectral index and LAI, and the sensitivities of the spectral index to changes in LAI and bandwidth were analyzed. Finally, the reflectance data at six bandwidths ranging from 40 to 65 nm were used to verify the spectral scale effect generated during the use of the spectral index to retrieve LAI. Results indicate that Vegetation Index of the Universal Pattern Decomposition(VIUPD) had the highest accuracy during LAI retrieval. Followed by Normalized Difference Vegetation Index(NDVI), Modified Simple Ratio Indices(MSRI) and Triangle Vegetation Index(TVI), although the coefficient of determination R^2 was higher than 0.96, the retrieved LAI values were less than the actual value and thus lacked validity. Other spectral indices were significantly affected by the spectral scale effect with poor retrieval results. In this study, VIUPD, which exhibited a relatively good correlation and sensitivity to LAI, was less affected by the spectral scale effect and had a relatively good retrieval capability. This conclusion supports a purported feature independent of the sensor of this model and also confirms the great potential of VIUPD for retrieval of physicochemical parameters of vegetation using multi-source remote sensing data.
基金supported by the Rural Development Administration(PJ013821032020),Republic of Korea。
文摘A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical reflectance index(PRI).NDVI is useful for indicating crop growth/phenology,whereas PRI was developed for observing physiological conditions.Thus,the seasonal change patterns of NDVI and PRI are two valuable pieces of information in a crop-monitoring system.However,capturing the seasonal patterns is considered challenging because the vegetation index values estimated by the reflection from vegetation are often governed by meteorological conditions,such as solar irradiance and precipitation.Further,unlike growth/phenology,the physiological condition has diurnal changes as well as seasonal characteristics.This study proposed a novel filtering method for extracting the seasonal signals of SRS-based NDVI and PRI in paddy rice,barley,and garlic.First,the measurement accuracy of SRSs was compared with handheld spectrometers,and the R^(2)values between the two devices were 0.96 and 0.81 for NDVI and PRI,respectively.Second,the experimental study of threshold criteria with respect to meteorological variables(i.e.,insolation,cloudiness,sunshine duration,and precipitation)was conducted,and sunshine duration was the most useful one for excluding distorted values of the vegetation indices.After data processing based on sunshine duration,the R^(2)values between the measured vegetation indices and the extracted seasonal signals of vegetation indices increased by approximately 0.002–0.004(NDVI)and 0.065–0.298(PRI)on the three crops,and the seasonal signals of vegetation indices became noticeably improved.This method will contribute to an agricultural monitoring system by identifying the seasonal changes in crop growth and physiological conditions.
文摘选取典型芦苇湿地基于芦苇叶片实测高光谱数据和叶面积指数(Leaf Area Index,LAI),在原始光谱的基础上进行了平滑(R)、一阶微分(FD)、倒数(RT)、对数(LT)、倒数一阶微分(RTFD)、对数一阶微分(LTFD)等六种光谱变换,利用竞争性自适应重加权算法(CARS)对不同变换下芦苇LAI特征光谱波段予以筛选,进而用筛选的特征波段采用逐波段组合法(BCI)构建芦苇LAI敏感光谱指数,利用随机森林(RF)、极端梯度提升(XGBoost)以及支持向量机(SVM)回归算法,构建芦苇LAI的高光谱估算模型。结果表明,采用CARS算法筛选不同变换光谱的特征波段构建模型,发现经过FD变换(R~2=0.417,RMSE=0.905)的模型效果最优。在CARS基础上使用筛选过后的特征波段构建植被指数进行建模比较,模型效果最好的是XGBoost(R2=0.620,RMSE=0.826)。
基金supported by the National High-Tech R&D Program of China(2011AA100703)the National Natural Science Foundation of China(30900868)+2 种基金the Natural Science Foundation of Jiangsu Province, China(BK2010453)the Academic Program Development of Jiangsu Higher Education Institutions, China(PAPD)the Science and Technology Support Plan of Jiangsu Province, China(BE2011351)
文摘Real-time monitoring of nitrogen status in rice and wheat plant is of significant importance for nitrogen diagnosis, fertilization recommendation, and productivity prediction. With 11 field experiments involving different cultivars, nitrogen rates, and water regimes, time-course measurements were taken of canopy hyperspeetral reflectance between 350-2 500 nm and leaf nitrogen accumulation (LNA) in rice and wheat. A new spectral analysis method through the consideration of characteristics of canopy components and plant growth status varied with phenological growth stages was designed to explore the common central bands in rice and wheat. Comprehensive analyses were made on the quantitative relationships of LNA to soil adjusted vegetation index (SAVI) and ratio vegetation index (RVI) composed of any two bands between 350-2 500 nm in rice and wheat. The results showed that the ranges of indicative spectral reflectance were largely located in 770-913 and 729-742 nm in both rice and wheat. The optimum spectral vegetation index for estimating LNA was SAVI (R822, R738) during the early-mid period (from jointing to booting), and it was RVI (Rs22, R73s) during the mid-late period (from heading to filling) with the common central bands of 822 and 738 nm in rice and wheat. Comparison of the present spectral vegetation indices with previously reported vegetation indices gave a satisfactory performance in estimating LNA. It is concluded that the spectral bands of 822 and 738 nm can be used as common reflectance indicators for monitoring leaf nitrogen accumulation in rice and wheat.
文摘Leaf area index (LAI) is an important parameter in a number of models related to ecosystem functioning, carbon budgets, climate, hydrology, and crop growth simulation. Mapping and monitoring the spatial and temporal variations of LAI are necessary for understanding crop growth and development at regional level. In this study, the relationships between LAI of winter wheat and Landsat TM spectral vegetation indices (SVIs) were analyzed by using the curve estimation procedure in North China Plain. The series of LAI maps retrieved by the best regression model were used to assess the spatial and temporal variations of winter wheat LAI. The results indicated that the general relationships between LAI and SVIs were curvilinear, and that the exponential model gave a better fit than the linear model or other nonlinear models for most SVIs. The best regression model was constructed using an exponential model between surface-reflectance-derived difference vegetation index (DVI) and LAI, with the adjusted R2 (0.82) and the RMSE (0.77). The TM LAI maps retrieved from DVILAI model showed the significant spatial and temporal variations. The mean TM LAI value (30 m) for winter wheat of the study area increased from 1.29 (March 7, 2004) to 3.43 (April 8, 2004), with standard deviations of 0.22 and 1.17, respectively. In conclusion, spectral vegetation indices from multi-temporal Landsat TM images can be used to produce fine-resolution LAI maps for winter wheat in North China Plain.
基金supported by the National High Tech R&D Program,China(863 Program,2002AA243011)the National Natural Science Foundation of China(30030090)the Natural Science Foundation of Jiangsu Province,China(BK2003079).
文摘The research was conducted to determine the relationships of protein and starch accumulation dynamics in grains of wheat to post-heading leaf SPAD values and canopy spectral reflectance. The results showed that leaf nitrogen accumulation was exponentially related to leaf SPAD values and linearly related to canopy spectral reflectance, and that there was negative linear relationship between leaf nitrogen accumulation and grain protein accumulation, but positive linear relationship between post-heading leaf nitrogen transloca-tion and grain protein accumulation at maturity. In addition, leaf SPAD values were parabolically related with and ratio indices R(l 500,610)and R(l 220,560)were exponentially related with protein and starch accumulation in grains. These results indicate that leaf SPAD values and canopy spectral reflectance should be good indicators of quality formation dynamics in wheat grains.
基金supported by the International Platform for Dryland Research and Education, Tottori University and the National Key R&D Program of China (2016YFC0500909)
文摘Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced technologies are used to efficiently and accurately assess the status of salinization processes. Case studies to determine the relations between particular types of salinization and their spectral reflectances are essential because of the distinctive characteristics of the reflectance spectra of particular salts. During April 2015 we collected surface soil samples(0–10 cm depth) at 64 field sites in the downstream area of Minqin Oasis in Northwest China, an area that is undergoing serious salinization. We developed a linear model for determination of salt content in soil from hyperspectral data as follows. First, we undertook chemical analysis of the soil samples to determine their soluble salt contents. We then measured the reflectance spectra of the soil samples, which we post-processed using a continuum-removed reflectance algorithm to enhance the absorption features and better discriminate subtle differences in spectral features. We applied a normalized difference salinity index to the continuum-removed hyperspectral data to obtain all possible waveband pairs. Correlation of the indices obtained for all of the waveband pairs with the wavebands corresponding to measured soil salinities showed that two wavebands centred at wavelengths of 1358 and 2382 nm had the highest sensitivity to salinity. We then applied the linear regression modelling to the data from half of the soil samples to develop a soil salinity index for the relationships between wavebands and laboratory measured soluble salt content. We used the hyperspectral data from the remaining samples to validate the model. The salt content in soil from Minqin Oasis were well produced by the model. Our results indicate that wavelengths at 1358 and 2382 nm are the optimal wavebands for monitoring the concentrations of chlorine and sulphate compounds, the predominant salts at Minqin Oasis. Our modelling provides a reference for future case studies on the use of hyperspectral data for predictive quantitative estimation of salt content in soils in arid regions. Further research is warranted on the application of this method to remotely sensed hyperspectral data to investigate its potential use for large-scale mapping of the extent and severity of soil salinity.
文摘Remote sensing technology, as the most advanced method for collecting data, along with the common ways often used in the past on research of environmental science, was integrated to study the relationship between environmental pollution of coal mine and spectral characteristics of nearby plants. With compositive index and mean reflectivity at near infrared, a regression equation was established, and a conclusion was made that spectral reflectivity can be used to distinguish regions with different pollution degree. Through testing with real status of the research region, it is verified that this kind of integration and conclusion not only are helpful for human being in controlling the movement law of pollutants and the corresponding change of coal mine environmental quality but also bring a new way for the research of environment problems of coal mine.
基金funded by the National Key R&D Program of China(Grant No.2017YFE0100800)the International Partnership Program of the Chinese Academy of Sciences(Grant No.131551KYSB20160002/131211KYSB20170046)the National Natural Science Foundation of China(41701481)。
文摘Glacial lake mapping provides the most feasible way for investigating the water resources and monitoring the flood outburst hazards in High Mountain Region.However,various types of glacial lakes with different properties bring a constraint to the rapid and accurate glacial lake mapping over a large scale.Existing spectral features to map glacial lakes are diverse but some are generally limited to the specific glaciated regions or lake types,some have unclear applicability,which hamper their application for the large areas.To this end,this study provides a solution for evaluating the most effective spectral features in glacial lake mapping using Landsat-8 imagery.The 23 frequently-used lake mapping spectral features,including single band reflectance features,Water Index features and image transformation features were selected,then the insignificant features were filtered out based on scoring calculated from two classical feature selection methods-random forest and decision tree algorithm.The result shows that the three most prominent spectral features(SF)with high scores are NDWI1,EWI,and NDWI3(renamed as SF8,SF19 and SF12 respectively).Accuracy assessment of glacial lake mapping results in five different test sites demonstrate that the selected features performed well and robustly in classifying different types of glacial lakes without any influence from the mountain shadows.SF8 and SF19 are superior for the detection of large amount of small glacial lakes,while some lake areas extracted by SF12 are incomplete.Moreover,SF8 achieved better accuracy than the other two features in terms of both Kappa Coefficient(0.8812)and Prediction(0.9025),which further indicates that SF8 has great potential for large scale glacial lake mapping in high mountainous area.
文摘Atrial fibrillation (Afib) is related with heart failure, stroke, and high mortality rates. In frequency domain analysis, pre-requisite for Afib detection has been the estimation of reliable dominant frequency (DF) of atrial signals via different spectral estimation techniques. DF further characterizes Afib, and helps in its treatment. This paper aims at finding the most appropriate nonparametric FFT-based spectral estimation technique to estimate reliable DF for Afib detection. In this work, real-time intra-atrial electrograms have been acquired and pre-processed for frequency analysis. DF is estimated via Bartlett using Hanning window, and Welch methods. Regularity index (RI), a parameter to ensure reliability of DF, is calculated using Simpson 3/8 and Trapezoidal rules. The best method is declared based upon high accuracy of Afib detection using reliable DF. On comparison, Welch method is found to be more appropriate to estimate reliable DF for Afib detection with 98% accuracy.
文摘Using satellite data for geological mapping beside saving time and reducing coast leads to increased accuracy. In this study, the result of remote sensing techniques has been compared for manifesting geological units. The study area is limited to 1:25,000 rectangle of Pasab-e-Bala which is located in the northeast of Isfahan and West of Qom-Zefreh fault. This region mainly consists of Devonian and Quaternary sedimentary units. In this study, ASTER and OLI satellite data has been corrected atmospherically and radiometrically. Spectral Analogues method and OLI band combination (652) in RGB image were powerful in distinguishing various rock units. Finally, a new geologic map of the Pasab-e-Bala area was created by integrating the results of remote sensing, previous geological maps and field inspection. It is concluded that the workflow of Landsat 8 image processing, interpretation and ground inspection have a great potential to identify geological formations. According to field data originality, accuracy of the produced map was evaluated through calculating kappa index and overall accuracy and a thematic accuracy of 86% was achieved for geological formations.
文摘This research aims to define an efficient and fast quantification of bitumen removal on the road surface by Digital Imaging Processing (DIP) and spectral analysis. The retrieval of bitumen removal is an important issue for road management and environmental studies related to asphalt wear and environmental pollution. The calculation of the Exposed Aggregate Index (EAI), based on DIP, allows to quantify in each frame the superficial removal of bitumen and the exposure of aggregates. A procedure, based on non-parametric classification process of digital images, gives a fast response of EAI. A correlation among EAI and spectral data, between 390 nm and 900 nm range, is evaluated. Results show a good correlation between spectral data at different wavelength and EAI. Finally, this work evaluates the possibility to retrieve asphalt bitumen removal through remote sensed imagery.
基金Under the auspices of National Natural Science Foundation of China(No.41230751,41101547)Scientific Research Foundation of Graduate School of Nanjing University(No.2012CL14)
文摘Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, Huan Jing-Hyper Spectral Imager(HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm(NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index(NSSRI) was constructed from continuum-removed reflectance(CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area(NDVI705 < 0.2). The soil adjusted salinity index(SAVI) was applied to predict the soil salt content in the vegetation-covered area(NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping(R2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale.
基金Supported by National Natural Science Foundation of China
文摘Let A=M-N be a regular splitting of an M-matrix. We study the spectral properties of the ineration matrix M-1N. Under a mild assumption on M-1 N. some necessary and sufficent conditions such that p(M-1N)=1 are obtained and the algebraic multiplicity and the index associated with eigenvalue 1 in M-1N are considered.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2014AA041402)the National Natural Science Foundation of China(Grant Nos.51272276 and 51322211)
文摘We report the observation of spectral broadening induced by 200 femtosecond laser pulses with the repetition rate of 1 kHz at the wavelength of 532 nm in semi-insulating 4H–SiC single crystals.It is demonstrated that the full width at half maximum of output spectrum increases linearly with the light propagation length and the peak power density,reaching a maximum 870 cm-1on a crystal of 19 mm long under an incident laser with a peak power density of 60.1 GW/cm2.Such spectral broadening can be well explained by the self-phase modulation model which correlates time-dependent phase change of pulses to intensity-dependent refractive index.The nonlinear refractive index n2 is estimated to be1.88×10-15cm2/W.The intensity-dependent refractive index is probably due to both the nonlinear optical polarizability of the bound electrons and the increase of free electrons induced by the two-photon absorption process.Super continuum spectra could arise as crystals are long enough to induce the self-focusing effect.The results show that SiC crystals may find applications in spectral broadening of high power lasers.
文摘An improved method based on minimum mean square error-short time spectral amplitude (MMSE-STSA) is proposed to cancel background noise in whispered speech. Using the acoustic character of whispered speech, the algorithm can track the change of non-stationary background noise effectively. Compared with original MMSE-STSA algorithm and method in selectable mode Vo-coder (SMV), the improved algorithm can further suppress the residual noise for low signal-to-noise radio (SNR) and avoid the excessive suppression. Simulations show that under the non-stationary noisy environment, the proposed algorithm can not only get a better performance in enhancement, but also reduce the speech distortion.